
1716

Einleitung
Introduzione

Das Logo
Il Logo

Das Siegel
Il sigillo

Farben
I colori

Typografie
Tipografia

Nutzung des Handbuches
Lavorare con il manuale

Fakultät für Wirtschaftswissenschaften
Facoltà di Economia
Faculty of Economics and Management

17

2 – Bei internen Veranstaltungen und Kommunikation
innerhalb der Universität sowie in der Webanwen-
dung auf den Fakultätsseiten kommt das Fakultätslogo
zum Einsatz. Die Bezeichnung der Universität
verschwindet hier und an deren Stelle tritt die dreispra-
chige Bezeichnung der jeweiligen Fakultät.
Die Fakultäten für Wirtschaftswissenschaften,
Ingenieurwesen, Design und Künste und Umwelt- und
Lebensmittelwissenschaften nutzen ihr Logo in
deutscher, italienischer und englischer Sprache.
Die Fakultät für Bildungswissenschaften verwendet
das Logo auf Deutsch, Italienisch und Ladinisch.

Nel caso della comunicazione di eventi interni
all’università, così come nella pagina web
delle diverse facoltà, è possibile utilizzare la versione
inufficiale del logo di facoltà. In questo caso,
la denominazione trilingue dell’università viene
sostituita da quella della facoltà.
Le Facoltà di Economia, Ingegneria, Design e Arti e
Scienze agrarie, ambientali e alimentari
utilizzeranno il proprio logo in lingua tedesca,
italiana e inglese.
La Facoltà di Scienze della Formazione farà uso del
logo in tedesco, italiano e ladino.

Hierarchie der Logos und Gebrauch in verschiedenen Kontexten
Gerarchia del logo e utilizzo in contesti diversi

1 – Das Logo wird nur dann um die mehrsprachige
Bezeichnung ergänzt, wenn diese für das Verständnis
bzw. im Kontext absolut erforderlich ist. Das Logo der
Freien Universität Bozen in den Sprachen Deutsch,
Italienisch und Ladinisch kommt auf allen offiziellen
Dokumenten zum Einsatz, also in Briefen, Verträgen
oder Diplomen. In Briefen werden die Fakultäten und
Diensteinheiten im Absenderblock in der Fußzeile
dreisprachig angeführt – alle Fakultäten und Dienst-
einheiten in den Sprachen Deutsch, Italienisch und
Englisch, mit Ausnahme der Fakultät für Bildungswis-
senschaften, die auf Deutsch, Italienisch und Ladi-
nisch kommuniziert.

Il logo viene integrato con la denominazione trilingue
solo se, nel contesto, è strettamente necessario fare
riferimento al nome completo dell’università.
Per tutti i documenti, i contratti e i certificati, l’unico
logo ufficiale della Libera Università di Bolzano sarà
in tedesco, italiano e ladino. Nelle lettere le Facoltà
e i Centri di Servizio inseriranno il logo trilingue a piè
di pagina nel blocco dedicato al mittente – tutte
le Facoltà e i Centri di Servizio, ad esclusione della
Facoltà di Scienze della Formazione, che userà
il logo in tedesco, italiano e ladino, utilizzeranno il logo
in tedesco, italiano e inglese.

1A – Präsentiert sich eine Fakultät autonom außer-
halb der Freien Universität Bozen emfpiehlt
es sich, den vollständigen Namen der Universität
zu verwenden, damit die Fakultät kontextualisiert
und eindeutig der Universität zugeordnet werden kann.

Se una facoltà si presenta autonomamente
all’esterno della Libera Università di Bolzano
si consiglia di aggiungere anche il nome
completo dell’università, cosicché la facoltà possa
essere contestualizzata e associata in modo
univoco all’ateneo.

1 2

1A

Fakultät für Ingenieurwesen
Facoltà di Ingegneria
Faculty of Engineering

Fakultät für Agrar-, Umwelt- und Lebensmittelwissenschaften
Facoltà di Scienze agrarie, ambientali e alimentari
Faculty of Agricultural, Environmental and Food SciencesFakultät für Ingenieurwesen

Facoltà di Ingegneria
Faculty of Engineering

Master in Software Engineering

Master Thesis

Automating Software
Performance Tests
using Agentic AI

Candidate: Elias Binder

Supervisor: Andrea Janes

July, 2025

Abstract

Motivation Software performance testing is essential for ensuring application reliability
and user satisfaction, especially in complex, fast-evolving systems. Traditional per-
formance testing methods are time-consuming, require expert knowledge, and often
fail to scale with modern development practices.

Problem statement Existing performance testing approaches lack automation and adapt-
ability, making them inefficient and inaccessible for many development teams.

Approach This thesis proposes a fully automated performance testing framework using
agentic AI and large language models. A desktop application was developed that inte-
grates LangGraph agents, MCP servers, and the PPTAM framework to autonomously
generate, execute, and analyze performance tests based on existing project artifacts.

Results The tool was successfully evaluated on two real-world microservice-based appli-
cations, demonstrating its ability to produce meaningful test scenarios, execute them
across environments, and generate insightful performance reports with minimal hu-
man input.

Conclusions This work shows that agentic AI can significantly reduce the manual effort re-
quired for performance testing, making it more accessible and scalable. Developers
facing similar challenges can adopt this approach to streamline their testing work-
flows and improve software quality without deep performance engineering expertise.

i

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Approach . 2
1.4 Contributions of this thesis . 3
1.5 Structure of the thesis . 3

2 Problem Statement 5
2.1 Problems with traditional approaches to performance testing 5
2.2 Requirements for the suggested solution . 6

3 Review of the state of the art 9
3.1 Preparation of a Systematic Mapping Study . 9
3.2 Related secondary literature . 9
3.3 Research method . 10

3.3.1 Research Questions . 10
3.3.2 Study Selection . 11
3.3.3 Search Strategy . 11
3.3.4 Study Selection and Eligibility Assessment 12
3.3.5 Data Extraction . 13

3.4 Results . 14
3.4.1 RQ1: How did the research field evolve over the past years? 14
3.4.2 RQ2: What are the existing approaches to automating performance test-

ing in software systems using AI? . 16
3.4.3 RQ3: How effective are AI-based approaches compared to other perfor-

mance testing baselines? . 16
3.4.4 RQ4: What metrics and methods are used to evaluate the success of AI-

driven performance testing? . 16
3.5 Discussion and conclusion . 21

4 Problem Solution 22
4.1 Fundamental idea . 22
4.2 Current approach on performance testing . 23

4.2.1 Scenario design . 23
4.2.2 Test execution . 24
4.2.3 Result analysis . 25

4.3 Identifying attack surfaces for automation . 26
4.3.1 Scenario design . 26

ii

CONTENTS iii

4.3.2 Test execution . 29
4.3.3 Result analysis . 29

4.4 Overall architecture . 30
4.4.1 System context overview . 30
4.4.2 Container overview . 32
4.4.3 The Performance Testing Agent Context 32
4.4.4 The Third Party Resources Context . 36

4.5 Agent architectures . 41
4.5.1 Fundamental agent architecture . 42
4.5.2 Agents overview . 44
4.5.3 Agents implementation . 47

4.6 Solutions mapped to problems . 54
4.6.1 Requirements-Solution Mapping . 54
4.6.2 Tactics–Solution Mapping . 54

5 Evaluation 57
5.1 Evaluation objectives . 57
5.2 Repository selection . 57
5.3 Experimental setup . 59

5.3.1 Hotel Reservation . 59
5.3.2 Social Network . 60

5.4 Execution and collected results . 60
5.4.1 Hotel Reservation . 60
5.4.2 Social Network . 72

6 Discussion 83
6.1 Evaluation interpretation . 83

6.1.1 Interpretation of the Hotel Reservation scenario 83
6.1.2 Interpretation of the Social Network scenario 84
6.1.3 Overall tool effectiveness . 84

6.2 Threats to Validity . 85

7 Conclusion and Further Studies 87

A Search query for the mapping study 91

B Textual results returned from agent executions 92
B.1 Generated scenarios for the Hotel Reservation scenario 92
B.2 Generated locust file for the Hotel Reservation scenario 93
B.3 Generated report for the Hotel Reservation scenario 95
B.4 Generated scenarios for the Social Network scenario 97
B.5 Generated locust file for the Social Network scenario 98
B.6 Generated report for the Hotel Reservation scenario 99

List of Tables

3.1 Most prominent improvements and limitations when using AI to automate
performance tests . 19

3.2 Most prominent AI evaluation metrics . 19

4.1 Requirements-to-Solution Mapping . 55
4.2 Tactics–Solution Mapping . 56

5.1 Thinking steps of the Project Purpose agent for the Hotel Reservation scenario 62
5.2 Thinking steps of the Project Insights agent for the Hotel Reservation scenario . 63
5.3 Thinking steps of the Feature Difficulties agent for the Hotel Reservation sce-

nario . 66
5.4 Thinking steps of the Feature Scenarios agent for the Hotel Reservation scenario 67
5.5 Thinking steps of the Project Environment agent for the Hotel Reservation sce-

nario . 69
5.6 Thinking steps of the Performance Test agent for the Hotel Reservation scenario 70
5.7 Thinking steps of the PPTAM Wrapper agent for the Hotel Reservation scenario 71
5.8 Thinking steps of the Result Interpreter agent for the Hotel Reservation scenario 72
5.9 Thinking steps of the Project Purpose agent for the Social Network scenario . . 74
5.10 Thinking steps of the Project Insights agent for the Social Network scenario . . 75
5.11 Thinking steps of the Feature Difficulties agent for the Social Network scenario 78
5.12 Thinking steps of the Feature Scenarios agent for the Social Network scenario . 79
5.13 Thinking steps of the Project Environment agent for the Social Network scenario 79
5.14 Thinking steps of the Performance Test agent for the Social Network scenario . 80
5.15 Thinking steps of the PPTAM Wrapper agent for the Social Network scenario . . 80
5.16 Thinking steps of the PPTAM Wrapper agent for the Social Network scenario . . 82

iv

List of Figures

3.1 Prisma Flow diagram for screening and selection process 13
3.2 Number of published papers over time . 15
3.3 Domain of applications under performance test 15
3.4 Types of AI used for performance test . 17
3.5 Automated performance test steps using AI . 17
3.6 Types of baseline comparisons used . 18
3.7 Types of Evaluation Methods . 20

4.1 System Context Diagram . 31
4.2 Container Diagram . 33
4.3 Component Diagram - Desktop Application . 34
4.4 Component Diagram - Desktop Application . 35
4.5 Component Diagram - Langgraph Agent . 37
4.6 ReAct Agent Architecture . 43
4.7 Modified Agent Architecture . 45
4.8 Project Insights Agent Architecture . 49

5.1 Results of the Project Insights agent for the Hotel Reservation scenario 64
5.2 Results of the Project Features agent for the Hotel Reservation scenario 65
5.3 Results of the Feature Difficulties agent for the Hotel Reservation scenario . . . 66
5.4 Results of the PPTAM Wrapper agent for the Hotel Reservation scenario 71
5.5 Results of the Project Insights agent for the Social Network scenario 76
5.6 Results of the Project Features agent for the Social Network scenario 77
5.7 Results of the Feature Difficulties agent for the Social Network scenario 78
5.8 Results of the PPTAM Wrapper agent for the Social Network scenario 81

v

Chapter 1

Introduction

Artificial Intelligence (AI) has swiftly transitioned from a specialised research domain to a
transformative force reshaping industries worldwide [1]. Among the most significant ad-
vancements is the development of novel AI architectures, such as the transformer architec-
ture, which has revolutionised natural language processing (NLP) and influenced a broad
spectrum of machine learning applications [2]. These innovations are increasingly being
integrated into software engineering workflows, supporting tasks such as code generation,
documentation, and automated testing [3]. As these technologies continue to mature, they
unlock new possibilities for automating complex processes that have traditionally relied on
substantial human expertise [4].

One such process is software performance testing, a vital phase in the software develop-
ment lifecycle that ensures applications meet performance benchmarks under varying con-
ditions. While automation in performance testing is not a new concept, the incorporation
of LLMs introduces groundbreaking capabilities for generating, executing, and analysing
performance tests with minimal human oversight.

1.1 Motivation

Software performance testing is a critical yet challenging aspect of modern quality assur-
ance, especially as applications become more complex and user expectations rise [5]. Tradi-
tional approaches to performance testing are often time-consuming and require specialised
domain knowledge, leading to bottlenecks and inadequate coverage [6]. Moreover, the quickly
evolving nature of software systems means that performance characteristics can shift with
each release, making static test suites increasingly irrelevant [6].

The rise of microservices and cloud-native applications has further complicated per-
formance testing due to their nested interdependencies [5] [6]. This necessitates a more
dynamic testing approach that can adapt to changes in the system. Recent advancements
in natural language processing, particularly in agentic AI and agent-to-agent workflows,
present a unique opportunity to revolutionise performance testing. By employing intelli-
gent automation, we can enhance testing efficiency, reduce the need for extensive human
expertise, increase coverage, and ultimately produce more reliable software systems [7]. Ad-
dressing these challenges is vital for meeting the demands of modern software development
and ensuring optimal application performance.

1

CHAPTER 1. INTRODUCTION 2

1.2 Objective

The primary objective of this thesis is to investigate and demonstrate the feasibility of lever-
aging agentic AI and Large Language Models to fully automate the end-to-end software per-
formance testing process. This research aims to bridge the gap between the theoretical po-
tential of AI-driven testing and practical implementation by developing and evaluating a
comprehensive tool that can mostly autonomously generate, execute, and analyse perfor-
mance tests with minimal human intervention.

Specifically, this work seeks to achieve the following key goals:

• Automated Test Scenario Generation: Develop an AI system to automatically gener-
ate meaningful performance test scenarios, given already available sources, such as
the codebase of the system under test, access its Jira/GitHub issues, etc. This includes
understanding application architecture, identifying critical performance paths, and
creating realistic load patterns that reflect actual usage scenarios. The system should
be able to generate diverse test cases that cover various performance testing strate-
gies, such as load testing, stress testing, and scalability testing.

• Autonomous Test Execution: Implement an agentic AI framework that can indepen-
dently execute the generated performance tests without human intervention. This
involves orchestrating test environments, managing test data, monitoring system be-
haviour during test execution, and handling unexpected scenarios or failures that may
arise during testing.

• Intelligent Result Analysis: Create an AI-powered analysis component capable of in-
terpreting performance test results, identifying bottlenecks, detecting anomalies, and
providing actionable insights for performance optimisation. The system should be
able to correlate performance metrics with the strategy of the performance test and
suggest potential improvements or areas of concern.

• Validation of Effectiveness: Evaluate the developed tool’s effectiveness by comparing
its performance against traditional testing approaches. This includes assessing the
quality of generated test scenarios, the accuracy of performance bottleneck identifi-
cation, and the practical utility of AI-generated insights for software optimisation.

• Exploration of Limitations and Opportunities: Identify the current limitations of
LLM and agentic AI approaches in performance testing contexts, while also exploring
opportunities for future enhancement and broader application within the software
testing domain.

Through achieving these objectives, this thesis aims to contribute to the growing body
of knowledge on AI-assisted software engineering while providing practical insights into the
application of cutting-edge AI technologies to solve real-world software testing challenges.

1.3 Approach

This research adopts a proof-of-concept approach through the development of a compre-
hensive desktop application that demonstrates the practical application of agentic AI and
agent-to-agent workflows to automated performance testing. The application serves as an

CHAPTER 1. INTRODUCTION 3

integrated environment where developers can leverage AI-driven automation for the com-
plete performance testing workflow while maintaining minimal human intervention re-
quirements. A key architectural decision is the utilisation of readily available development
resources to maximise the contextual understanding of the AI system while minimising ad-
ditional overhead for developers. The application is designed to seamlessly connect to and
analyse multiple information sources that are typically present in modern software devel-
opment environments, including the software codebase itself, project management systems
such as GitHub issues and Jira tickets, API documentation in the form of Swagger or Ope-
nAPI definition files, and other relevant project artefacts. This integration strategy ensures
that the underlying LLM has access to exceptional detail about the software system’s archi-
tecture, functionality, known issues, and intended behaviour, enabling the system to under-
stand implementation details, identify critical execution paths, and recognise patterns that
may impact performance. The overall goal is to reduce the human intervention required
throughout the performance testing lifecycle by intelligently leveraging the wealth of infor-
mation available in existing development artefacts. The proof-of-concept implementation
follows an iterative development approach, with emphasis on creating a user-friendly inter-
face that abstracts the complexity of the underlying AI systems while providing transparency
into the automated decision-making processes, ensuring that sophisticated performance
analysis becomes accessible to development teams without dedicated performance testing
specialists.

1.4 Contributions of this thesis

This thesis makes the following contributions:

• The definition of the problem and requirements, which are necessary to address

• The architecture and design of the developed solution

• The developed prototype Performance Testing Agent available at https://github.c
om/EliasBinder/Performance-Testing-Agent

• The developed Langgraph Agents in Python available at https://github.com/Elia
sBinder/Performance-Testing-Agent-Langgraph

• An MCP Server to explore the code base Codebase Explorer MCP Server available at
https://github.com/EliasBinder/MCPServer-Codebase-Explorer Swagger Ex-
plorer MCP Server available at https://github.com/EliasBinder/MCPServer-Swa
gger-Explorer PPTAM wrapped with an HTTP Server available at https://github
.com/EliasBinder/PPTAM-With-HTTP-Wrapper

• The evaluation of the developed prototype

• The discussion of the advantages and limitations of the developed prototype

1.5 Structure of the thesis

This thesis is organised into seven sections. It begins with an introduction (Sect. 1), which
outlines the problem, states the objectives, and provides an overview of the approach used.

https://github.com/EliasBinder/Performance-Testing-Agent
https://github.com/EliasBinder/Performance-Testing-Agent
https://github.com/EliasBinder/Performance-Testing-Agent-Langgraph
https://github.com/EliasBinder/Performance-Testing-Agent-Langgraph
https://github.com/EliasBinder/MCPServer-Codebase-Explorer
https://github.com/EliasBinder/MCPServer-Swagger-Explorer
https://github.com/EliasBinder/MCPServer-Swagger-Explorer
https://github.com/EliasBinder/PPTAM-With-HTTP-Wrapper
https://github.com/EliasBinder/PPTAM-With-HTTP-Wrapper

CHAPTER 1. INTRODUCTION 4

The next section presents the problem statement (Sect. 2), detailing the requirements envi-
sioned for the proposed tool. Following that, an overview of the state of the art (Sect. 3) is
provided in the form of a mapping study, focusing on specific types of tools and the tech-
nologies involved.

The following section (Sect. 4), outlines the proposed solution and details the system’s
architecture from different perspectives. The next section 5, describes the methods used to
validate and test the developed solution. After that, section 6 presents the evaluation results
and discusses their implications in relation to the initial research question. Finally, section
7 summarises the key activities undertaken, emphasises their importance, addresses the
technical challenges faced, and suggests directions for future work.

Chapter 2

Problem Statement

This chapter examines the limitations of traditional performance testing, highlighting in-
efficiencies and scalability issues in manual methods. To address these challenges, a novel
tool is introduced that uses agentic artificial intelligence to automate the creation, execu-
tion, and analysis of performance test scenarios.

2.1 Problems with traditional approaches to performance testing

In the realm of software engineering, ensuring the performance and scalability of applica-
tions under varying load conditions is a critical concern. Performance testing, a key tech-
nique in this domain, traditionally involves manually designing test scenarios, executing
them, and interpreting the results, which often reveals itself to be a time-consuming process
that is error-prone and difficult to scale [8]. As systems grow more complex and the demand
for rapid deployment increases, the limitations of manual performance testing become in-
creasingly apparent [8]. This thesis addresses these challenges by introducing a novel tool
that leverages agentic artificial intelligence to automate the creation, execution, and analy-
sis of performance test scenarios, thereby enhancing efficiency, accuracy, and adaptability
in performance testing workflows.

Performance testing encompasses various methods, including load testing, stress test-
ing, and scalability testing, all designed to evaluate responsiveness, stability, and resource
utilisation [9]. Selecting the correct type of performance test requires specialised knowledge
and experience in the field. A performance test must always fulfil one or several goals which
can be formulated as questions, e.g. What is the maximum load my system can handle?
or Can my system withstand the average load throughout the whole day?. The selection of
goals also requires a deep understanding of the software system under test’s architecture.
Regarding a microservice architecture, for example, scalability tests are typically a much
higher concern, as these types of architectures require a more complex infrastructure setup,
which, if misconfigured, can quickly lead to bottlenecks and other performance issues.

Traditionally, performance testing involves manually designing test scenarios that sim-
ulate user behaviour, configuring test environments, executing tests using tools like Apache
JMeter or LoadRunner, and then analysing the results by hand to identify performance con-
cerns by focusing on preselected metrics [8]. Regarding industry application, more and
more companies are integrating performance tests into their CI/CD pipelines to be auto-
matically executed and evaluated when the codebase changes, which provides evidence
that at least some degree of automation is necessary in the area.

5

CHAPTER 2. PROBLEM STATEMENT 6

2.2 Requirements for the suggested solution

To accommodate this, the starting point of this thesis is formulated in the form of require-
ments, following the schema presented in [10]. Specifically, the criteria will be divided into
goal, domain, process/product, and design requirements. Moreover, requirements are for-
mulated using the schema proposed by [11].

In the context of requirements engineering, the classification into goal, domain, process,
and design requirements helps structure and clarify the intent, constraints, and implemen-
tation of a system. Each category serves a distinct purpose:

• Goal Requirements describe the high-level objectives or desired outcomes that the
system should achieve. These are often abstract and stakeholder-driven, focusing on
why the system is being developed. For example, "Improve user engagement on the
platform" is a goal requirement.

• Domain Requirements capture the rules, constraints, and facts about the environ-
ment in which the system operates. These are typically derived from the real-world
context and are often non-negotiable. For instance, "The system must comply with
GDPR regulations" is a domain requirement.

• Process/Product Requirements specify how the development or operational processes
should be carried out. These might include methodologies, workflows, or standards
to be followed during the system’s lifecycle. An example would be, "The development
must follow Agile Scrum methodology."

• Design Requirements are more concrete and technical, detailing how the system should
be built to meet the goals and constraints. These include architectural decisions, in-
terface specifications, and performance criteria. For example, "The system must sup-
port at least 10,000 concurrent users" is a design requirement.

This layered approach ensures that the system is not only technically sound but also
aligned with the needs of stakeholders, the industry, and environmental constraints.

Regarding the development of the tool discussed in this thesis to fully automate perfor-
mance testing, the goal requirement is:

1. As a developer, I do not want to deal with performance issues so that I can focus on
providing value for my clients.

The domain requirements are:

1. As a developer, I want to avoid spending time with performance tests so that I can pri-
oritise adding new features over fixing performance-related bugs.

2. As a developer, I want to get clear instructions on how to fix performance issues so that
I can be productive and quickly solve them.

3. As a customer I want that performance issues are resolved quickly so that I can benefit
more from the software.

4. As a customer, I want performance issues to be identified and fixed before deployment
so that they do not affect my work.

CHAPTER 2. PROBLEM STATEMENT 7

5. As a developer, I want to re-run performance tests without redefining them so that I can
validate changes quickly.

The product requirements are:

1. As a developer, I want an AI based solution so that I do not have to manually create,
execute, and analyse performance tests.

2. As a developer, I want to be able to configure the solution so that I can adapt it to dif-
ferent types of software I am developing.

3. As a developer, I want to understand how the AI solution works so that I can intervene
if it does something I do not need.

4. As a developer, I want to obtain a report of the results of the solution so that I can inte-
grate the suggestions in the code I am developing.

5. As a developer, I want to re-execute previously generated performance tests so that I can
validate performance after code changes.

The design requirements are (formulated using the terms recommended in [12]):

1. The solution must be implemented in Python.

2. The solution must require as little user input as possible and rely mainly on already
available information, such as the codebase or JIRA issues

3. The test scenarios must be created using agentic AI, implemented using LangGraph1.

4. The agent must use PPTAM2 [13] to execute the performance tests in local, staging
and production environments.

5. The result analysis must generate a final report indicating weaknesses and bottlenecks
in the system.

6. The solution must provide human-in-the-loop checkpoints to allow user validation of
intermediate results.

7. The solution must be independent from the architecture of the software under test.

To further define the scope of the proof-of-concept solution and to avoid insane com-
plexity by covering all sorts of software, the proposed tool must specifically test web servers,
focusing on the automated testing of HTTP endpoints. While many existing solutions, such
as JMeter or LoadRunner, require significant expertise to operate effectively [14], this tool
must embed deep domain knowledge of performance testing. It must be designed to guide
users through the entire process, from scenario creation to execution and result analysis,
without requiring expert intervention. This enables true end-to-end automation, elimi-
nating the need for performance-testing experts to intervene in the process. Therefore,
it autonomously gathers insights about the system under test and proceeds with minimal

1https://www.langchain.com/langgraph
2https://github.com/pptam/pptam-tool

https://www.langchain.com/langgraph
https://github.com/pptam/pptam-tool

CHAPTER 2. PROBLEM STATEMENT 8

manual input. Nevertheless, it must incorporate human-in-the-loop mechanisms, allowing
users to review and adjust the process at key stages and gather minimal information from
the user, e.g. to select a goal, since the tool cannot know why the user wants to execute a
performance test in the first place. To ensure accessibility and ease of use, the tool must
be delivered as a desktop application with a user-friendly graphical interface. Furthermore,
it is built to be architecture-independent, functioning seamlessly regardless of whether the
system under test follows a monolithic, microservices, or any other architectural style.

Chapter 3

Review of the state of the art

This chapter summarises the current research in AI-driven software performance testing.
It positions the proposed solution within the broader academic and industry context by
highlighting relevant methods and technologies for performance test automation. Through
a systematic mapping study, the chapter examines how artificial intelligence, particularly
agentic AI and large language models, is used to automate various stages of the performance
testing process. By analysing trends and gaps in the literature, it sets the groundwork for
understanding the significance of the approach developed in this thesis.

3.1 Preparation of a Systematic Mapping Study

To ground the development of the proposed agentic AI-based tool for automating perfor-
mance testing, it is essential to first understand the broader landscape of artificial intelli-
gence (AI) applications in software testing. This chapter, therefore, presents a systematic
mapping study that explores the current state of research on AI-driven automation in per-
formance testing. While the focus of this thesis is on agentic AI, the scope of this study
is intentionally broader, encompassing a wide range of AI techniques, including machine
learning, deep learning, and heuristic-based approaches.

By surveying the wider field, this chapter aims to identify existing trends, gaps, and op-
portunities in the automation of performance testing. This broader perspective not only
contextualises the novelty of our agentic approach but also highlights how it fits within and
advances the current body of knowledge.

It also serves as proof to justify the exploration of other AI. The insights gained from this
mapping study not only illuminate the current landscape of AI-driven automation in per-
formance testing but also underscore the need for more autonomous, adaptive solutions,
thereby justifying the relevance and timeliness of the agentic AI-based approach discussed
in this thesis.

3.2 Related secondary literature

The integration of artificial intelligence (AI) into software testing has gained substantial re-
search interest, with several systematic reviews examining this intersection. Trudova et al.
[15] conducted a systematic literature review that catalogued AI techniques applied across
various software testing activities, emphasizing their role in test automation. Similarly, Bat-

9

CHAPTER 3. REVIEW OF THE STATE OF THE ART 10

tina [16] provided a comprehensive review of AI applications in test case generation, defect
prediction, test case prioritization, and Android testing. However, their taxonomy notably
underrepresented performance testing automation.

In the context of machine learning-assisted performance testing, Moghadam et al. [17]
found that supervised learning—particularly neural networks—is commonly used to gener-
ate inputs for system, GUI, and performance testing scenarios.

Despite these efforts, a significant gap remains in the systematic exploration of AI-driven
performance testing automation. Existing reviews predominantly focus on functional test-
ing and related tasks, offering limited insight into how AI can support the creation, execu-
tion, and analysis of performance test scenarios. This study addresses that gap by system-
atically mapping AI techniques across the entire performance testing lifecycle, offering a
comprehensive overview of current research and highlighting directions for future investi-
gation.

3.3 Research method

This research follows the guidelines for conducting a Systematic Mapping Study (SMS) pro-
posed by Petersen et al. [18] to explore the current landscape of research on the use of arti-
ficial intelligence in automating software performance testing.

3.3.1 Research Questions

This study is guided by the following research questions, grouped into thematic areas. A
funnel approach is employed to establish research questions, beginning with an overall un-
derstanding of how the research field has developed over the past years and what are current
points of particular interest, then focusing on the automation of performance tests in de-
tail, and extracting state-of-the-art metrics and quantification methods to gain insight into
whether the adoption of AI in software performance testing is successful.

• RQ1: How did the research field evolve over the past years?

– Rationale: This question explores how the research field has evolved since AI
became mainstream and how the release of advanced AI computing methods,
such as machine learning or large language models, influenced its growth.

• RQ2: What are the existing approaches to automating performance testing in soft-
ware systems using AI?

– Rationale: This question aims to explore how AI adoptions in software testing are
making their way into the field of performance testing. The goal here is to cat-
alogue both traditional and AI-based automation techniques, providing a base-
line for comparison.

• RQ3: How effective are AI-based approaches compared to other performance test-
ing baselines?

– Rationale: This question evaluates the value of AI in performance testing. It
seeks evidence of improvements in efficiency, accuracy, scalability, or cost ef-
fectiveness. This is crucial for justifying the use of AI models in practice.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 11

• RQ4: What metrics and methods are used to evaluate the success of AI-driven per-
formance testing?

– Rationale: Understanding how success is measured helps assess the compara-
bility of existing studies. It also informs future research by highlighting which
metrics are most meaningful (e.g., response time reduction, test coverage, false
positive rate).

3.3.2 Study Selection

This section focuses on defining strict boundaries of what falls within the scope of this re-
search and what is being excluded. Therefore, inclusion and exclusion criteria were deter-
mined to act as a decision framework for the literature included in the analysis for this study.

Inclusion criteria: Studies that discuss the application of Artificial Intelligence (AI), in-
cluding Large Language Models (LLMs), in aspects of software performance testing and their
automation.

Given the inclusion criteria, the following exclusion criteria were derived:

• Study does not use AI for any step of performance testing, i.e.

– Generation of performance test scenarios

– Execution of the performance test

– Interpretation of the performance test results

• Study is not peer-reviewed (e.g., blog posts, white papers, opinion pieces).

• Study is not available online

• Study has already been published elsewhere with a different name

• Study is a secondary study

• Study is not in English

• Study is published before 2018

• Studies that do not provide sufficient methodological detail or empirical evidence to
support their claims

3.3.3 Search Strategy

In order to find studies that match the criteria defined in the section "Study Selection" and
the research questions, a search query must first be constructed. Therefore, the most preva-
lent keywords must be found for every aspect of this study. These keywords are listed below:

• Performance Testing

– Rationale: Find research that is about performance testing. It also makes sense
to check for keywords like "load testing", "stress testing", "scalability testing",
"throughput testing", or "latency testing" to also retrieve studies that do not fo-
cus on performance testing in general but instead on only one of its many as-
pects.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 12

• Artificial Intelligence

– Rationale: Filter out all publications that do not use artificial intelligence in any
form. This includes terms like "artificial intelligence", "AI", "machine learning",
"deep learning", "agentic AI", "LLM", "large language model", "language model"
or "GPT".

• Restriction to Software

– Rationale: Performance testing is also applied in non-software domains such as
civil engineering (e.g., bridges, buildings). To ensure relevance, the search query
must restrict results to the software engineering domain. This was achieved by
including the terms "software system", "software application", "software engi-
neering", or "software testing" and excluding unrelated domains. Additionally,
including "microservices" and "web services" provided research with relevance,
as performance tests often target these types of applications.

• Publication Year

– Rationale: The search will be limited to studies published in 2018 or later, as this
marks the release of the first version of BERT and the beginning of the modern AI
surge, providing a foundation for subsequent models like RoBERTa, DistilBERT,
ALBERT, and even influenced GPT models. This ensures that the included stud-
ies reflect recent modern advancements in AI, particularly those influenced by
large language models.

• Document Types

– Rationale: To ensure the quality and reliability of the findings, the search will
include only peer-reviewed publications such as journal articles or conference
papers. Grey literature, editorials, and non-scientific sources will be excluded.

Based on the keywords above, a search query was derived, which is presented in the
appendix A

This search query was applied to Scopus, ACM Digital Library and IEEE Xplore.
These libraries offer comprehensive and complementary coverage of relevant literature.
Scopus provides a broad, multidisciplinary index that ensures wide visibility of peer-reviewed
research. IEEE Xplore is essential for accessing high-impact publications in software engi-
neering and performance testing, particularly from industry-driven and standards-focused
perspectives. The ACM Digital Library complements these by offering rich content from
leading conferences and journals in software engineering and artificial intelligence, ensur-
ing a well-rounded and in-depth exploration of the topic.

3.3.4 Study Selection and Eligibility Assessment

The search query was adapted to fit the syntax of the selected libraries without altering or
removing its semantic meaning. Running the search query on Scopus revealed 380 papers,
IEEE Xplore revealed 48 papers, and ACM Digital Library returned 1133 papers. The
PRISMA flow diagram presented in figure 3.1 shows step-by-step how these papers were
processed to track down papers relevant to this mapping study. Ultimately, 37 papers were
considered for this analysis.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 13

Figure 3.1: Prisma Flow diagram for screening and selection process

3.3.5 Data Extraction

The included papers have been analyzed based on criteria derived from the research ques-
tions.

• RQ1: How did the research field evolve over the past years?

– Publication Year: Gain insights in how the research area is evolving

– Application Domain: Types of systems that are tested with AI automated perfor-
mance tests

• RQ2: What are the existing approaches to automating performance testing in soft-
ware systems using AI?

– AI Technique Used: What kind of AI is used in the automation process? E.g. large
language models, basic machine learning approaches, deep learning

– LLM Model Used: If an LLM is used, what model was leveraged? E.g. Bert, GPT,
Claude

– Automation Scope: Performance testing involves several key steps, such as creat-
ing test scenarios, executing selected scenarios and analyzing the performance
test results. This metadata aims to clearify the parts of performance tests that
got automated using AI.

– Integration with Tools: How were performance tests automated? Did they extend
existing performance testing tools or did they develop a custom frameworks?

CHAPTER 3. REVIEW OF THE STATE OF THE ART 14

• RQ3: How effective are AI-based approaches compared to other performance test-
ing baselines?

– Baseline comparison: Was a comparison made between traditional and AI based
performance testing?

– Baseline Type: To what baseline type were AI-based approaches compared to?
E.g., Manual testing, Rule-based, Static analysis

– Reported Improvement: If it was concluded, that AI-based approaches offer ben-
efits, what are they? E.g., Accuracy, Time saved, Coverage

– Limitations: What limitations were reported? E.g., Complexity, Data require-
ments

• RQ4: What metrics and methods are used to evaluate the success of AI-driven per-
formance testing?

– Evaluation Method: How was the evaluation carried out? E.g., Case study, Bench-
marking, Simulation

– AI Evaluation Metrics: How did the AI perform? Are there measurable metrics?

The analysis for the listed metadata is based on the whole content of the included pa-
pers. This was considered necessary as most of the chosen metadata to analyze is highly
specific and unlikely to be included in the abstracts.

3.4 Results

3.4.1 RQ1: How did the research field evolve over the past years?

Figure 3.2 illustrates the temporal evolution of publications in this field. The data reveals
a significant growth phase from 2018 to 2020, with publications increasing from a single
paper to eight papers. Following this initial surge, the field entered a stabilization phase
(2021-2024) characterized by annual fluctuations between four and eight publications. The
single publication recorded for 2025 (as of June) is expected to increase by year-end. This
pattern, rapid growth followed by stabilization, is typical of emerging research areas, where
initial enthusiasm transitions to more focused investigations as the field matures.

The application domains targeted by these studies, depicted in Figure 3.3, provide fur-
ther insight into the field’s evolution. Cloud Computing and Web Applications emerge as
primary research focuses, together accounting for approximately 40% of the published works.
This emphasis reflects the inherent performance challenges in these domains: Cloud Com-
puting environments introduce complexities such as resource elasticity, multi-tenancy, and
distributed architectures, while Web Applications require continuous performance valida-
tion to maintain responsiveness across diverse user bases and frequent updates.

The concurrent trends in publication volume and application diversity suggest a field
that experienced rapid initial growth, driven by broader AI advancements, and is now de-
veloping more specialized research trajectories across multiple application domains. This
evolution demonstrates increasing recognition of AI’s potential to address complex perfor-
mance testing challenges across various software systems.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 15

20
18

20
19

20
20

20
21

20
22

20
23

20
24

20
25

0

2

4

6

8

10

1

4

8

5

8

4

6

1

Year

N
u

m
b

er
o

fp
u

b
li

sh
ed

p
ap

er
s

Figure 3.2: Number of published papers over time

AI &
Algorit

hm
s

Clo
ud

Com
putin

g &
Serv

erle
ss

Dist
rib

ute
d

Syste
m

s

Larg
e Scale

Syste
m

s

Real Tim
e Syste

m
s

W
eb

Applic
atio

ns

Oth
er

0

2

4

6

8

10

4

8

4 4 4

7

8

Application under test

N
u

m
b

er
o

fp
u

b
li

sh
ed

p
ap

er
s

Figure 3.3: Domain of applications under performance test

CHAPTER 3. REVIEW OF THE STATE OF THE ART 16

3.4.2 RQ2: What are the existing approaches to automating performance testing
in software systems using AI?

Recent research on automating software performance testing using artificial intelligence
highlights a diverse range of approaches, with machine learning emerging as the most preva-
lent technique featured in 16 studies. Deep learning and reinforcement learning follow,
with 6 studies each, while natural language processing (NLP), evolutionary algorithms, and
other AI methods are less commonly applied. These techniques are employed across var-
ious stages of the performance testing lifecycle. The analysis phase is the most frequently
automated, with 29 studies leveraging AI to interpret results, detect anomalies, and predict
system behaviour. The execution and preparation phases are also addressed, however, to
a lesser extent, with 14 and 11 studies, respectively, focusing on test scenario generation,
selecting the right scenarios to execute, and optimising the performance of test executions.
This distribution suggests a strong emphasis on data-driven analysis while also indicating
a growing interest in achieving end-to-end automation of performance testing through in-
telligent systems. Furthermore, the use of LLMs and agentic AI has been barely explored for
automating performance tests so far, which leaves a huge gap for further research. The pa-
pers that do use natural language processing rely on BART-large, Dialogflow and custom
fine-tuned GPT-like models. The analysis of AI-driven software performance testing tools re-
veals a strong prevalence of custom frameworks, often integrated with existing performance
testing, monitoring, and orchestration tools such as JMeter, Prometheus, Kubernetes, and
CI/CD pipelines. This trend reflects the highly specialized and context-dependent nature
of performance testing, where off-the-shelf solutions may not meet the nuanced require-
ments of diverse systems under test. Integration with established tools like BenchmarkDot-
Net, JMH, and Chaos Mesh suggests a pragmatic approach, leveraging proven technologies
to enhance reliability and reproducibility. Overall, the diversity in tool integration under-
scores the experimental and evolving nature of this research area, where innovation often
requires bridging gaps between AI capabilities and performance engineering practices.

3.4.3 RQ3: How effective are AI-based approaches compared to other perfor-
mance testing baselines?

Out of the 37 papers included in this mapping study, 26 conducted baseline comparisons
with other performance testing methods. Among these, 18 papers referenced conventional
manual and traditional approaches. This suggests a significant dependence on established
testing techniques as a benchmark for evaluating newer, automated methods.

As shown in Figure 3.6, manual and traditional approaches were the most frequently
cited baselines, followed by heuristic/statistical methods (8 papers), machine learning/op-
timization (7 papers), rule-based approaches (6 papers), and randomized methods (4 pa-
pers). Based on the different nature of the used baseline comparison types, a wide variety
of improvements and limitations were identified throughout the studies that are presented
in Figure 3.1.

3.4.4 RQ4: What metrics and methods are used to evaluate the success of AI-
driven performance testing?

To evaluate the success of AI-driven performance testing, researchers have employed a di-
verse set of methods and metrics, reflecting the multifaceted nature of this emerging field.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 17

Deep
Learn

in
g

Evolu
tio

nary
Algorit

hm
s

M
achin

e Learn
in

g

Natu
ra

l Language Pro
cess

in
g

Rein
fo

rc
em

ent Learn
in

g

Oth
er

0

5

10

15

20

6

2

16

4

6

3

Types of AI

N
u

m
b

er
o

fp
u

b
li

sh
ed

p
ap

er
s

u
si

n
g

th
e

A
I

ty
p

e

Figure 3.4: Types of AI used for performance test

0 5 10 15 20 25 30 35

Preparation

Execution

Analysis

11

14

29

Number of papers that automate the step

Pe
rf

o
rm

an
ce

te
st

st
ep

Figure 3.5: Automated performance test steps using AI

CHAPTER 3. REVIEW OF THE STATE OF THE ART 18

M
anual/T

ra
diti

onal Appro
aches

Rule-B
ase

d
Appro

ach

Heuris
tic

/S
ta

tis
tic

al Appro
ach

M
L/O

ptim
izatio

n
Appro

ach

Random
ize

d
0

5

10

15

20
18

6

8
7

4

Baseline comparison types

N
u

m
b

er
o

fu
sa

ge
s

in
th

e
p

ap
er

s

Figure 3.6: Types of baseline comparisons used

CHAPTER 3. REVIEW OF THE STATE OF THE ART 19

Table 3.1: Most prominent improvements and limitations when using AI to automate per-
formance tests

Improvements Limitations
Time saved Data availability and quality
Accuracy Scalability of AI models
Cost savings Model interpretability
Improved reliability Time-consuming test execution phase
Reduced downtime Fluctuations in results
Proactive issue resolution Limited predictor variables
Increased test case effectiveness (IPPstd up to
3.42x)

Hardware Resource constraints for AI models

Proactive issue resolution Real-time monitoring challenges

Table 3.2: Most prominent AI evaluation metrics

Category Metrics
Classification Metrics Accuracy, Precision, Recall, F1-score (or F-

measure), Specificity, Balanced Accuracy, Con-
fusion Matrix

Regression Metrics Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Er-
ror (MAE), Mean Absolute Percentage Error
(MAPE), R-squared (R2)

Ranking and Other Metrics Normalized Discounted Cumulative Gain
(NDCG), Mean Average Precision (MAP), Top-
N success rate

The most commonly used evaluation method is empirical or experimental evaluation, fea-
tured in 28 studies, which underscores the importance of validating AI techniques through
controlled and reproducible experiments. Benchmarking is used in 19 studies, highlighting
the role of standardised datasets and tools in assessing performance. Case studies (14 stud-
ies) and industrial or real-world integration (11 studies) also play a significant role, demon-
strating the practical applicability and relevance of AI solutions in real-world settings. Other
methods, such as simulation, fault injection or mutation testing, cross-validation, and com-
parisons with baselines, e.g. simpler AI models, are used less frequently. User or human-
based evaluations are rare, suggesting limited exploration of human-in-the-loop or usability
aspects.

In terms of metrics, the studies utilise a broad range of evaluation criteria tailored to
the nature of the AI task. Classification tasks are assessed using metrics such as accuracy,
precision, recall, F1-score, specificity, and confusion matrices. For regression-based evalu-
ations, metrics such as mean squared error (MSE), root mean squared error (RMSE), mean
absolute error (MAE), mean absolute percentage error (MAPE), and R-squared (R²) are com-
monly used. Additionally, ranking-oriented tasks employ metrics such as normalized dis-
counted cumulative gain (NDCG), mean average precision (MAP), and Top-N success rate.
This variety of metrics reflects the huge amount of different and complex approaches to au-
tomating performance testing and the need for nuanced evaluation strategies. Overall, the
field demonstrates a strong emphasis on empirical rigor and metric diversity, indicating a
maturing research landscape focused on both technical accuracy and practical relevance.

CHAPTER 3. REVIEW OF THE STATE OF THE ART 20

Case
Stu

dy

Em
piri

cal/E
xperim

enta
l Evalu

atio
n

Benchm
ark

in
g

Sim
ulatio

n

Cro
ss

-V
alid

atio
n

Fault
In

jectio
n/M

uta
tio

n
Testi

ng

In
dustr

ia
l/R

eal-W
orld

In
te

gra
tio

n

Use
r or Hum

an-B
ase

d
Evalu

atio
n

Com
paris

on
with

Base
lin

es/
Oth

er M
odels

0

10

20

30

14

28

19

6
4

6

11

3
5

Evaluation Methods

N
u

m
b

er
o

fp
u

b
li

sh
ed

p
ap

er
s

u
si

n
g

th
e

m
et

h
o

d

Figure 3.7: Types of Evaluation Methods

CHAPTER 3. REVIEW OF THE STATE OF THE ART 21

3.5 Discussion and conclusion

This systematic mapping study provides a comprehensive overview of the current landscape
of AI-driven automation in software performance testing. The findings reveal a rapidly
evolving field that has transitioned from exploratory research to studies that are more spe-
cialized and application-driven. The initial surge in publications between 2018 and 2020
reflects growing interest in leveraging AI for performance testing, while the subsequent sta-
bilization suggests a maturing research domain with refined focus areas.

Machine learning remains the dominant AI technique, particularly in the analysis phase
of performance testing, where it is used to detect anomalies, predict system behavior, and
interpret test results. However, the limited use of large language models (LLMs) and agentic
AI indicates a significant opportunity for future exploration. The integration of AI into per-
formance testing tools is largely achieved through custom frameworks, often built on top
of established platforms like JMeter and Prometheus, highlighting the need for flexible and
context-aware solutions.

Effectiveness comparisons show that AI-based approaches often outperform traditional
methods in terms of time savings, accuracy, and scalability. Nonetheless, challenges such as
data quality, model interpretability, and hardware constraints persist. Evaluation methods
are diverse, with empirical studies and benchmarking being the most common, and a wide
range of metrics are employed to assess AI performance across classification, regression,
and ranking tasks.

In conclusion, while AI has demonstrated substantial potential in automating software
performance testing, the field is still in a phase of active development. Future research
should focus on expanding the use of LLMs, improving model transparency, and addressing
practical deployment challenges. By bridging these gaps, AI can become a cornerstone in
the evolution of performance engineering, enabling more efficient, accurate, and adaptive
testing processes.

Chapter 4

Problem Solution

In this chapter, a detailed solution to the challenges discussed earlier is presented. Insights
from current research and identified needs are utilised. The main ideas, design, and strategy
for implementing a new tool that leverages advanced AI to automate software performance
testing are explained.

The solution aims to cover each stage of the performance testing process—from creating
scenarios to running tests and analysing results—while minimising the need for human in-
volvement. A flexible design is employed, connecting large language models, relevant data
sources, and coordination functions to provide a comprehensive automated testing experi-
ence.

The following sections outline the reasoning behind key design choices, describe the
system’s components, and demonstrate how they work together to achieve the established
goals.

4.1 Fundamental idea

A desktop application was developed to facilitate end-to-end automation of performance
testing processes. The tool enables the management of multiple projects, each encapsulat-
ing its own configurations, test scenarios, results, and environments. A guided onboarding
experience is provided to assist users in setting up performance tests, including the prepa-
ration of environments and the configuration of agents.

Performance tests are structured around specific application features, allowing for tar-
geted and meaningful evaluations. The SUT is not treated as a single, monolithic entity;
instead, the different features of the SUT are extracted and evaluated in detail. For each of
these features, a full-stack performance test can be conducted, with agentic tools designing
and executing tests and collecting relevant metrics.

Test results from various agents and configurations are aggregated and visualised within
the application, enabling comparisons across environments such as local, staging, and pro-
duction.

The solution allows for the updating of configurations and agent setups as the system
under test evolves, while preserving historical data for regression analysis. Intermediate
steps, such as Dockerization of the application, which is required for PPTAM test execution,
and environment setup, are also addressed to ensure seamless integration.

By consolidating all aspects of performance testing into a single interface, the tool presents
itself as a performance testing agent that streamlines workflows and enhances the efficiency

22

CHAPTER 4. PROBLEM SOLUTION 23

of performance evaluation efforts.

4.2 Current approach on performance testing

4.2.1 Scenario design

The creation of test scenarios is a critical phase when conducting performance tests, aimed
at evaluating how a particular part of the system behaves under specific workloads. The
creation of effective performance test scenarios is a nuanced process that requires a deep
understanding of the system under test (SUT), its intended usage patterns, and the perfor-
mance goals of the stakeholders. Therefore, it makes sense to outline the conventional prac-
tices followed by performance testers in designing these scenarios, highlighting the sources
of information they rely on, the reasoning behind scenario selection, and the methods used
to define performance goals.

First of all, a performance tester must investigate the system and moreover the context
within it is used. To accomplish that, a comprehensive understanding of the system’s archi-
tecture, components, and expected behavior must be gathered. Testers typically consult a
variety of sources, including:

1. User stories and requirements documentation

• These provide insight into how the system is expected to be used, helping testers
identify critical user journeys and usage patterns.

2. System architecture and design documents

• These help in identifying performance-critical components, such as databases,
APIs, and third-party services.

3. Source code and commit history

• In some cases, testers inspect the codebase to understand implementation de-
tails, identify potential bottlenecks, or detect recent changes that may impact
performance.

4. Stakeholder interviews

• Discussions with developers, product owners, and operations teams help clarify
performance expectations and identify business-critical scenarios.

After that, the testers define one or several goals depending on the current phase of
development and the types of results they want to achieve at the end. There are a number of
different types of performance tests as defined by Pargaonkar et. al [9]. The most commonly
used are:

• Load Testing: Evaluates system behaviour under expected user loads to ensure it
meets performance criteria.

• Stress Testing: Pushes the system beyond its limits to identify breaking points and
assess robustness.

CHAPTER 4. PROBLEM SOLUTION 24

• Scalability Testing: Measures the system’s ability to scale up (or out) as demand in-
creases.

• Spike Testing: Assesses how the system handles sudden surges in traffic.

• Endurance (Soak) Testing: Evaluates system stability and resource usage over ex-
tended periods.

Once the system context is understood and the goals of the performance test are well
defined, testers begin to derive specific test scenarios. This process involves identifying
key user interactions, modelling realistic workload, mapping user flows and prioritising
scenarios. Based on user stories and analytics data, testers select the most common and
performance-sensitive user actions. Within the scope of an e-commerce application, an
example for that can be the following order of events:

1. Login

2. Search for a particular product

3. Adding the first product of the results page to the cart

4. Performing the checkout

This results in a step-by-step list of interactions. After obtaining these flows of user interac-
tion, the expected number of concurrent users, request rates, and session durations must be
defined based on production data or stakeholder input. This results in a list of end-to-end
workflows of fictive users that can then be mapped to simulate real-world usage, often using
tools like UML activity diagrams or sequence diagrams. In the end, the testers have a wide
variety of scenarios; however, not all of them might provide the same level of usefulness,
mainly in regard to how many different features are tested and whether they align with the
goals of the performance testers. To compensate for that, the scenarios must be sorted by
prioritising the most important ones.

The final step is to implement the performance test scenarios using specialized tools
such as JMeter, K6, Gatling, or LoadRunner.

4.2.2 Test execution

Testers must also ensure that the test environment closely mirrors production in terms of
hardware, software, and network configurations to obtain reliable results. Therefore, the
staging environment is often used for carrying out the tests. However, depending on the
chosen goals and the available environments, the development/local environment or the
production environment might be better and/or cheaper choices that might still satisfy the
required quality of results. For example, in case the goal of the performance test is to un-
cover memory leaks by using endurance testing, it is likely that this fault also occurs in the
development environment, but maybe to a lesser extent. Therefore, it makes sense to ex-
ecute the performance test locally and try to observe the suspected problems there first
before running the tests in staging or production. Especially with the rise of cloud com-
puting, which is often billed per request, such an approach is often more cost-effective and
may yield the same or similar results. However, when the goal is to observe the maximum
capacity of the system (stress testing), it obviously does not make sense to run these types of
tests locally, since the developers’ machines are completely unrelated to real traffic. In case

CHAPTER 4. PROBLEM SOLUTION 25

the staging environment is an exact replica of the production environment, executing the
test there would be the most sensible approach, also because it does not impact customers’
experiences on the production environment. If it is not an exact replica, the stress test shall
be carried out in production, scheduled when the number of real customers is at its lowest,
e.g. during nighttime.

As a conclusion, selecting the most suitable environment is crucial for obtaining the
required and unobscured test results.

4.2.3 Result analysis

Analyzing the results of performance tests is a crucial step in understanding whether a sys-
tem meets its performance requirements and identifying areas for improvement. Therefore,
it is necessary to outline the standard practices followed by performance testers in interpret-
ing test outcomes, comparing them against expectations, and deriving actionable insights.
This exposes points of attack that can be later investigated for automation.

The analysis process varies depending on the type of performance test conducted, but
it generally involves a combination of quantitative metrics evaluation, system behavior ob-
servation, and contextual interpretation.

The first important step is to establish a baseline and comparison criteria. This baseline
may include current system usage metrics, which give insights into real-world data such as
average response times, peak user loads, and resource utilisation from production environ-
ments. If the software is developed for a client, it may also contain service-level agreements
(SLAs), which are predefined performance targets agreed upon with stakeholders. Further-
more, it may also consider historical performance and usage data or even industry bench-
marks, defined by standard performance expectations for similar systems or technologies.

Next, testers typically choose key metrics to focus on. These provide raw data on how
the system performed during the test execution and must be interpreted during the result
analysis phase. Some examples of these metrics are provided below:

• Response time: Time taken to process a request, often broken down by endpoint or
transaction type.

• Throughput: Number of transactions or requests processed per unit of time.

• Error rate: Percentage of failed or erroneous transactions.

• Resource utilisation: CPU, memory, disk I/O, and network usage during the test.

• Latency distribution: Percentile-based analysis (e.g., 90th, 95th, 99th percentile) to
understand worst-case performance.

These metrics are visualised using graphs, histograms, and time-series plots to identify trends,
spikes, and anomalies. Furthermore, the types of metrics analysed also depend on the cho-
sen goals. For example, in stress testing, the response time is a good indicator to see when
the performance of the SUT starts to degrade. For endurance testing, for example, the re-
source utilisation provides insights into bottlenecks.

Afterwards, these metrics must be analysed based on the type of performance test con-
ducted. The type already professes the goal, the focus of analysis and the outcome. Some
examples are presented below.

• Load Testing

CHAPTER 4. PROBLEM SOLUTION 26

– Goal: Validate system performance under expected user load.

– Analysis Focus: Stability of response times, throughput consistency, and resource
usage under normal conditions.

– Outcome: Determines whether the system can handle its intended workload
without degradation.

• Stress Testing

– Goal: Identify system limits and failure points.

– Analysis Focus: Behavior under extreme load, error rates, system crashes, and
recovery mechanisms.

– Outcome: Reveals bottlenecks and helps plan for capacity upgrades or failover
strategies.

• Scalability Testing

– Goal: Assess how performance scales with increased load or resources.

– Analysis Focus: Linear or non-linear growth in throughput and resource usage,
efficiency of scaling mechanisms.

– Outcome: Informs architectural decisions and infrastructure planning.

This procedure guides the analysis phase, ensuring it stays focused on the performance as-
pects for which the test was planned.

Finally, the gathered data is interpreted and reported. This means that beyond raw met-
rics, testers interpret results in context. This means that metrics are correlated, for example,
linking high response times with CPU spikes or memory saturation. Root causes for the ob-
served behaviour are identified, and a final report is written, summarising results in dash-
boards. These reports can be tailored to technical and non-technical stakeholders, often
with recommendations for remediation.

4.3 Identifying attack surfaces for automation

The aim of this solution is not to reinvent the wheel and devise yet another completely dif-
ferent approach to performance testing. Instead, the various steps discussed in section 4.2
will be revised, and a strategy will be developed for each of them on how to approach their
automation if possible.

4.3.1 Scenario design

As stated in the previous section, testers must develop a fundamental understanding of the
application. This is typically done by inspecting the source code and other documents re-
lated to the SUT. To automate this step, it is therefore necessary to provide as much con-
text as possible to the large language model to generate reasonable scenarios. Agentic AI,
particularly Langgraph, offers an ideal solution in the form of tools. Tools serve effectively
as integration capabilities, enabling the AI to access external resources, such as APIs, web
search, or code execution tools, thereby extending its functionality. It allows the AI to invoke
predefined programmatic functions and retrieve results autonomously, while also allowing

CHAPTER 4. PROBLEM SOLUTION 27

the LLM to select the necessary parameters for invoking these functions. Such functions
can either be defined in the agent’s source code or made available using Model Context Pro-
tocol Servers (MCP-Servers). These are standalone executables that can be started when
the agent is started, allowing for communication with the agent using Server-Sent Events
or standard input/output. It is a way of encapsulating functionality for improved reusabil-
ity across various agents and extending the agent’s capabilities in a unified manner, which
most publicly available LLM models support. Based on the analysis made in section 4.2, the
following tools were chosen to satisfy the need for context and, therefore, provide better end
results:

1. Codebase Tools: This set of tools provides the LLM with read-only access to the source
code of the SUT. It allows navigation of the folder structure, reading files, and search-
ing the entire codebase using Regular Expression search queries. Given that mode
codebases offer ReadMe files and other documentation, this allows the AI to gather
sophisticated knowledge about the purpose of the project while also providing an op-
portunity to collect implementation-specific insights

2. GitHub Tools: These give the LLM additional context regarding issues, planned mile-
stones and a commit history. It enables the AI to track the current progress of devel-
opment and identify potential difficulties that may affect the project’s performance.

3. Atlassian Jira/Confluence Tools: Jira is one of the most well-known project manage-
ment tools in the industry. It allows users to create issues and define user stories. Con-
fluence, in contrast, acts as a knowledge base for the project. It is a place for storing
and organising documentation and planning documents. By allowing LLMs to access
these documents, the quality of output can be significantly improved.

4. Swagger/OpenAPI Tools: Insights into the offered endpoints also provide the LLM
with an understanding of the offered features and functionality. On the oneenable
the LLM to quickly understand how end-users utilise the SUTf the SUT. On the other
hand, it will allow the LLM to understand how end-users use the SUT quickly.

Not all projects utilise all the listed third-party tools; therefore, it was decided that only
the Codebase MCP server must be present for the agent developed in this thesis to function.
The reason for that is that all software projects typically have a codebase of some sort, so
it is logical to benefit from this already existing source. However, connecting also the other
listed tools essentially increases the AI’s understanding of the project. In that case, if a soft-
ware company, for example, is already working with Jira, it can also benefit from using it for
designing performance test scenarios.

Unfortunately, there is no silver bullet for transitioning from starting at the provided
context to achieving functional and well-structured scenarios. However, the process can
be divided into x subsequent steps that are universally applicable, and agentic AI can be
leveraged to devise a suitable approach for each of these steps, depending on the provided
context and the nature of the SUT.

1. Understanding the project

• Goal: Obtain a fundamental understanding of the SUT

• Solution: Develop an agent that has access to the provided context and writes a
project description for the SUT by determining its purpose. This description can
later be used to instruct subsequent agents.

CHAPTER 4. PROBLEM SOLUTION 28

2. Understanding the technical details

• Goal: Obtain implementation specific insights

• Solution: Use the codebase tools with a specified agent to obtain insights into
the architecture and the used tech-stack. Furthermore, also analyse the authen-
tication mechanisms, if present, from which the test generation agent can later
benefit.

3. Understanding the offered functionality

• Goal: Get a list of SUT features. Since it is difficult to develop a single perfor-
mance test for the entire project, targeting performance tests to specific features
seems more reasonable and also decouples the process of designing test scenar-
ios from the size of the codebase and System Under Test (SUT).

• Solution: Develop an agent that uses the provided context to generate a list of
features of the SUT. Each of these features must be described using a name, a
detailed description, the value it provides for end users, and the level of impor-
tance (low, medium or high). The generation of test scenarios can then target a
selected feature, granting granularity and high coverage.

4. Understanding the feature’s difficulties

• Goal: Brainstorm about possible performance bottlenecks when interacting with
the feature

• Solution: Utilise a dedicated agent that analyses the tech stack and the codebase
to understand if performance issues regarding the selected feature exist. This
procedure can partially drive scenario creation by pointing out possible prob-
lems to the scenario creation agent, thereby obtaining more sophisticated re-
sults that have a higher chance of uncovering performance issues.

5. Generating scenarios for a feature

• Goal: Generate a locust test file

• Solution: Use the information gathered from the previously listed agents to gen-
erate scenarios in the form of a Locust file for the SUT. This also involves provid-
ing the agent with the existing context again to determine what API endpoints
exist and debugging tools that enable the agent to test individual API calls for
the SUT on the fly while writing the Locust file, thus ensuring its validity.

6. Generating a PPTAM configuration

• Goal: Generate a PPTAM configuration for executing the Locust file

• Solution: Provide all the already gathered information to an agent and generate
a test configuration file for PPTAM, used for the performance test execution.

The suggested approach offers a standardised method for designing scenarios. By util-
ising agentic AI for each step, this approach ensures it is completely independent from the
System Under Test (SUT). Performance testers can intervene after each agent execution us-
ing the user interface to adjust the results if needed, thereby eliminating the risk of scenario

CHAPTER 4. PROBLEM SOLUTION 29

creation failure or generating unusable results. The orchestration of these agents is there-
fore handled by the user interface, which starts the next agent as soon as the performance
tester has verified the results of the previous agent. Implementation of an agent-to-agent
architecture can begin once it is confirmed that performance testers are no longer needed.
However, this exceeds the scope of this thesis and will not be discussed further.

4.3.2 Test execution

Automating the execution of performance tests presents a particularly complex challenge
due to its strong dependency on the current state of the software under test (SUT). As soft-
ware evolves over time, through new feature additions, architectural changes, or infrastruc-
ture updates, the conditions under which performance tests must be executed also shift.
This dynamic nature introduces significant variability in test environments, making full au-
tomation of this phase difficult.

Moreover, the choice of execution environment (e.g., local, staging, or production) of-
ten depends on the specific performance goals, such as identifying memory leaks, validat-
ing scalability, or stress-testing system limits. These decisions typically require contextual
awareness of the development lifecycle, deployment infrastructure, and operational con-
straints—factors that are difficult to generalise or automate reliably.

Given these complexities, fully automating test execution in a way that adapts to ongo-
ing development progress and system evolution is beyond the scope of this thesis. However,
one practical approach to mitigate this challenge is to enable the re-execution of previously
generated performance tests on demand. This allows testers to validate performance re-
peatedly as the system changes, without requiring the regeneration of test scenarios each
time. Such a mechanism supports iterative testing workflows while maintaining a manage-
able level of automation.

4.3.3 Result analysis

In traditional performance testing, result analysis is a manual, expertise-driven process that
involves interpreting raw metrics such as response times, throughput, and error rates in the
context of predefined goals. As described in subsection 4.2.3, testers typically compare these
metrics against baselines derived from SLAs, historical data, or industry standards. They
then visualize the data using graphs and dashboards, identify anomalies, and attempt to
correlate them with potential root causes—often relying on intuition and experience. This
process is time-consuming, error-prone, and challenging to scale, particularly in agile envi-
ronments where rapid iteration is crucial.

To overcome these limitations, it seems feasible to outsource the result analysis using
agentic AI. It can autonomously examine raw performance test data, understand the oper-
ational profile of the SUT, and contextualise the results based on the specific performance
test goal, e.g. load, stress, or endurance testing. The outcome is a structured, developer-
friendly report that not only summarises key metrics but also interprets them in the context
of the system’s expected behaviour, identifies potential bottlenecks, and offers actionable
recommendations.

CHAPTER 4. PROBLEM SOLUTION 30

4.4 Overall architecture

In this section, the overall architecture of the developed tool will be presented. Therefore,
a detailed overview of the different components and concepts will be given in form of dia-
grams and textual explanations.

The proposed solution consists of the following major building blocks:

• GUI: Tauri1 with Svelte2 was used to develop the user interface. Tauri allows develop-
ers to create desktop applications using web technologies, such as Svelte and other UI
libraries, to minimise development time. Unlike Electron3, Tauri does not produce gi-
gantic bundle sizes by leveraging the OS’s webview components instead of Chromium
and using Rust as its backend, which also results in better performance. The ultimate
goal is to have a single executable that offers pleasurable performance and bundles
all dependencies within it.

• Langgraph Agent: The Langgraph agents are all written in Python, packaged using
pyinstaller into one standalone executable and packaged into the Tauri binary.

• MCP Servers: The MCP Servers are written in various languages. Other authors have
already developed some of the previously described MCP Servers, whereas others
have been developed within the scope of this thesis using Python. All of them have
been packaged into standalone executables and also packaged into the Tauri binary.

• PPTAM Test Runner: The PPTAM application was wrapped with an HTTP Server to
allow for complete external control. As stated previously, PPTAM is used to execute
performance tests and collect the raw result data (metrics).

This list provides a first peek into the development of the presented tool. To build on that,
these blocks will be analysed in the following subsections, and the relationship between
them will be explained in detail.

4.4.1 System context overview

Figure 4.1 presents a first-level overview of the implemented architecture. The performance
tester (user) interacts with the Performance Testing Agent, which guides the tester through
the process of creating test scenarios and then executes these scenarios against the Sys-
tem Under Test. During scenario creation, several AI agents are utilised to automate as
many steps as possible during the performance testing journey. These agents must rely on
a large language model to provide them with reasoning capabilities. Therefore, GPT models
from OpenAI and Claude from Anthropic were both considered; however, in terms of per-
formance testing, GPT 4.1 mini yielded the best results while also costing much less than
Claude per token. Therefore, all developed agents leverage GPT models. To provide them
with sufficient context about the SUT, many MCP servers were utilised, allowing the agents
to query information about various aspects of the SUT, as presented in the diagram.

1https://tauri.app/
2https://svelte.dev/
3https://www.electronjs.org/

https://tauri.app/
https://svelte.dev/
https://www.electronjs.org/

CHAPTER 4. PROBLEM SOLUTION 31

Performance Testing Agent
[Software System]

Allows users to test the performance
of a software system by guiding the

user through the performance testing
process and using agentic AI to
automate each step as much as

possible

wants to test a software product

System Under Test
[Software System]

The system that is supposed to be
evaluated using the

assesses the
performance

OpenAI
[LLM Provider]

Provides GPT models for thinking and
evaluation requirements

leverages models
for agentic

architecture

Third-Party Resources
[Context Provider]

Resources to gather information
about the System Under Text.

Examples are GitHub and Atlassian

reaches out to
gather information

[System Context] Performance Testing Agent

Performance Tester
[Person]

Someone who is tasked with testing the
performance of another software system

Figure 4.1: System Context Diagram

CHAPTER 4. PROBLEM SOLUTION 32

4.4.2 Container overview

Figure 4.2 illustrates the components of the Performance Testing Agent and also embeds the
already presented MCP-Servers, pointing out how all these components interact with each
other. The Performance Testing Agent consists of four major elements: the Tauri Desktop
application, a SQLite database, the PPTAM Test Runner, and the bundled Langraph Agents.
The Tauri app serves as an orchestrator that coordinates the Langgraph agents, stores their
results in the SQLite database and interacts with the PPTAM Runner to execute performance
tests. The Langgraph Agent is a bundled binary that combines the various agents presented
in the previous sections. Most of these agents require additional context about the SUT.
Therefore, they can leverage the four packaged MCP-Servers to gain the necessary informa-
tion they need. However, it is worth noting that not all agents always utilise all four MCP
servers. Section 4.5 will provide deeper insights and reasons for this design decision.

4.4.3 The Performance Testing Agent Context

This subsection presents detailed component diagrams for all three containers within the
Performance Testing Agent context: the Desktop Application, the PPTAM Runner, and the
Langgraph Agent binary.

Desktop Application Component

Figure 4.3 covers the architecture of the Desktop Application. Built with Tauri v2, the ap-
plication consists of a frontend developed in Svelte and styled using DaisyUI4, and a back-
end that handles core logic and persistence. The frontend communicates with the back-
end through Tauri’s command interface and also interacts directly with the SQLite database
via the Tauri SQLite adapter. This adapter not only facilitates local data storage but also
enhances the developer experience by allowing secure database access from the frontend
code, which is particularly beneficial in this case, as the web application is only accessible
within the Tauri WebView.

A key architectural feature of the backend is the use of sidecars, which are external bina-
ries bundled with the application and executed alongside the main Tauri process. Sidecars
are employed to manage auxiliary services that are better handled outside the main appli-
cation runtime. In this project, sidecars are used to launch two local HTTP servers: one
acts as a wrapper for the PPTAM module (see PPTAM Runner), enabling HTTP-based inter-
action with its functionality, and the other serves as an interface for communicating with
LangGraph agents (see Langgraph Agent), which are part of a language model orchestra-
tion system. This approach allows the application to maintain modularity and separation
of concerns while leveraging native performance and simplified deployment. By offloading
these services to sidecars, the application remains lightweight and secure, yet capable of
integrating complex external systems seamlessly, which leverage libraries and tools that are
incompatible with Rust, like Langgraph and PPTAM.

PPTAM Runner Component

To enable automated performance testing within the PPTAM framework, a containerised
component, referred to as the PPTAM Runner, was developed. This component encap-

4https://daisyui.com/

https://daisyui.com/

CHAPTER 4. PROBLEM SOLUTION 33

Performance Tester
[Person]

Someone who is tasked with testing the
performance of another software system

System Under Test
[Software System]

The system that is supposed to be
evaluated using the

OpenAI
[LLM Provider]

Provides GPT models for thinking and
evaluation requirements

[Container] Performance Testing Agent

executes tests
using

orchestrates

Desktop Application
[Container: Tauri]

Provides all of the performance
testing capabilities to the tester

Langgraph Agent
[Container: Python with Langgraph]

Generate scenarios and interpret
test results

Database
[Container: SQLite]

Stores information about SUT,
generated scenarios and
performance test results

stores and reads
information from

leverages models
for agentic

architecture

interacts exclusively with

PPTAM Runner
[Container: Python with PPTAM]

Executes the performance tests on
the SUT and returns metrics

assesses the
performance

Performance Testing Agent
[Software System]

Codebase Explorer
[Container: MCP Server]

Provides the LLM with read-
only access to read and

browse the SUT's codebase
files

Third-Party Resources
[Software System]

GitHub Explorer
[Container: MCP Server]

Provides the LLM with read-
only access to GitHub issues

and milestones

Atlassian Explorer
[Container: MCP Server]

Provides the LLM with read-
only access to explore Jira

issues and user stories and to
access confluence

documentation

Swagger Explorer
[Container: MCP Server]

Provides the LLM with
capabilities to expolore

endpoints provided by the
SUT

accesses

Figure 4.2: Container Diagram

CHAPTER 4. PROBLEM SOLUTION 34

Frontend
[Component: OS's Webview with Svelte]
Provides the UI for the tester to

interact with, visualises data and
collects user input

executes tests on the SUT using orchestrates

Backend
[Component: Rust]

Orchestrates the performance testing
progress and process

Desktop Application
[Container]

interacts exclusively with

IPC using
Tauri

Framework

Database
[Container: SQLite]

Stores information about SUT,
generated scenarios and
performance test results

Persistence using

PPTAM Runner
[Container: Python with PPTAM]

Executes the performance tests on
the SUT and returns metrics

Langgraph Agent
[Container: Python with Langgraph]

Generate scenarios and interpret
test results

Performance Tester
[Person]

Someone who is tasked with testing the
performance of another software system

Figure 4.3: Component Diagram - Desktop Application

CHAPTER 4. PROBLEM SOLUTION 35

PPTAM Runner
[Container]

HTTP Server
[Component: Flask]

Provides a webserver to allow for
performance test execution by interacting

with PPTAM's internal APIs

PPTAM
[Component: PPTAM]

Execute performance test and collect
metrics about the SUT

requests performance test
for a given configuration

Desktop Application
[Container: Tauri]

Provides all of the performance
testing capabilities to the tester

System Under Test
[Software System]

The system that is supposed to be
evaluated using the

controlls

evaluates

Figure 4.4: Component Diagram - Desktop Application

sulates the core functionality of PPTAM and extends its capabilities through a lightweight
HTTP interface implemented using the Flask framework. The interface exposes a RESTful
POST endpoint designed to receive test configurations dynamically. Traditionally, PPTAM
relies on .ini files located within the SUT directory to define test parameters. However, in
automated testing scenarios where different configurations are required based on specific
features or testing goals, a more flexible approach is necessary. To address this, the HTTP
wrapper was designed to accept configuration data directly in the request body. Upon re-
ceiving a request, the configuration is parsed and passed to PPTAM’s internal APIs, which
are then used to execute the corresponding performance test. Once the test execution is
complete, the raw performance metrics representing the test outcome are returned in the
HTTP response. This architecture enables dynamic, on-demand test execution as soon as
the scenarios are ready. The associated C4 component diagram, shown in Figure 4.4, illus-
trates the internal structure of the PPTAM Runner, including the interaction between the
HTTP interface, the internal PPTAM APIs, and the dynamic configuration mechanism at a
high level.

Langgraph Agent Component

Since the Langgraph framework is currently only available for Python and JavaScript, a sep-
arate component has been constructed in Python that encapsulates all the AI Agents re-
quired for this project. Therefore, a similar approach to the PPTAM component has been
taken, where an HTTP Server wraps the core logic of the element, providing endpoints that
are invokable from the Tauri backend process to enable bidirectional communication be-
tween these two processes. As presented in Figure 4.5, the HTTP Server then invokes one of
the nine available agents to respond to the Desktop Application’s request. When the Tauri
backend calls the endpoint to invoke an agent, it sends along the configuration for the MCP
Servers, such as the path to the codebase folder for the Codebase MCP Server, as well as re-
sults from previous executions from other agents, so that the current agent can build upon
those results to avoid re-analysing the SUT over and over again and allowing the agent to

CHAPTER 4. PROBLEM SOLUTION 36

just focus on one particular aspect of the SUT. The architectures of the presented agents will
be discussed in section 4.5 in detail as it would exceed the overall architecture presentation
of the whole tool.

4.4.4 The Third Party Resources Context

In this subsection, the chosen MCP-Servers will be explained in detail, highlighting how the
support the agents with fulfilling their tasks.

The Model Context Protocol (MCP) is an open, standardized communication protocol
designed to enhance how applications interact with large language models (LLMs) by man-
aging contextual information more efficiently. Developed by Anthropic, MCP addresses
the limitations of traditional API-based interactions with LLMs, particularly around context
persistence, memory management, and tool integration[19].

At the core of MCP is a client-server architecture. In this setup, MCP servers act as inter-
mediaries between LLMs and external data sources or tools. These servers expose specific
capabilities, such as access to files in the codebase of the SUT, APIs to interact with GitHub,
Jira or Atlassian, or computational tools, through a standardized interface. This allows LLMs
to interact with external systems in a structured, secure, and extensible manner[20].

MCP servers provide three primary types of capabilities:

1. Tools: Executable functions that LLMs can invoke (e.g., database queries, API calls).

2. Resources: File-like data that can be read or retrieved (e.g., documents, structured
data).

3. Prompts: Predefined templates that guide the LLM in performing specific tasks.

Unlike traditional LLM API calls, where the full conversation history must be resent with
each request, MCP servers maintain persistent context. This enables more natural, multi-
turn interactions and reduces token usage by intelligently summarizing and pruning con-
text. As a result, applications built on MCP can support advanced features like retrieval-
augmented generation (RAG), tool use, and long-term memory.

MCP is increasingly used in agentic AI systems, where LLMs act as autonomous agents
capable of reasoning, retrieving information, and taking actions. By standardizing how con-
text and tools are integrated, MCP servers make it easier to build scalable, modular, and
interoperable AI applications.

C
H

A
P

T
E

R
4.

P
R

O
B

LE
M

SO
LU

T
IO

N
37

Langgraph Agent
[Container]

HTTP Server
[Component: aiohttp]

Provides a webserver to allow for agent
invokation with provided configuration

Project Purpose
[Component: Langgraph Agent]
Create a description for the

SUT

Project Insights
[Component: Langgraph Agent]

Extract TechStack and
Authentication mechanisms for

the SUT

Project Features
[Component: Langgraph Agent]

Extract the various features of
the SUT

Feature Difficulties
[Component: Langgraph Agent]
Extract the difficulties for a
given feature regarding its

implementation

Feature Scenarios
[Component: Langgraph Agent]

Formulate possible interaction
flows for how users may use

the specified feature

Project Environment
[Component: Langgraph Agent]

Dockerise the SUT and extract
an endpoint where it's

reachable

Performance Test
[Component: Langgraph Agent]

Create a locustfile to test the
specified feature

PPTAM Wrapper
[Component: Langgraph Agent]

Create a PPTAM configuration that
wraps the locustfile and makes the

test executable using PPTAM

Result Interpreter
[Component: Langgraph Agent]

Interpret the raw results gained
from the performance test

execution and generate a report

invokes

requests agent evaluation

Desktop Application
[Container: Tauri]

Provides all of the performance
testing capabilities to the tester

OpenAI
[LLM Provider]

Provides GPT models for thinking and
evaluation requirements

Third-Party Resources
[Context Provider]

Resources to gather information
about the System Under Text.

Examples are GitHub and Atlassian

invokes

invokes

leverages models for agentic architecture leverages MCP Servers

Figure 4.5: Component Diagram - Langgraph Agent

CHAPTER 4. PROBLEM SOLUTION 38

Within the scope of this project, a Codebase Explorer MCP Server and a Swagger Explorer
MCP Server were developed, and other third-party MCP Servers were integrated to provide
the LLM with a large amount of sources about the SUT from different perspectives. Those
will be explained separately in the following subsections. In perspective of the proposed
tool, however, only connecting the Codebase Explorer MCP Server was deemed necessary,
as all software projects typically have a codebase. All of the other included MCP Servers can
be connected optionally, in case a software project already as a Jira board, for example, or
its repository can be found on GitHub. All MCP Servers provide the LLM with a different
point of view of the SUT, therefore, it is evident that the more MCP Servers are connected,
the better the contextual understanding of the LLM is.

Codebase Explorer MCP Server

The Codebase Explorer MCP Server provides read-only access for the LLM to retrieve files
from the codebase of the System Under Test (SUT). While open-source developers have de-
veloped several MCP Servers, it has become clear that the functionality they offer to the
LLM exceeds what the agents for this project actually require. During testing of these Code-
base MCP Servers, such as https://github.com/DeDeveloper23/codebase-mcp, it was
observed that the LLM became overwhelmed by the range of available functionalities. As
a result, it struggled to identify essential files, such as documentation markdowns, and to
navigate the overall folder structure effectively. To compensate for that, a custom code-
base MCP server was developed by observing how the LLM works with the codebase and
experimenting with the offered functionality. For example, after providing basic function-
ality, such as get_file_content(path) or list_files_in_directory(path), it became evident that
the LLM also needed a search function for the entire codebase to find information about
features implemented in different parts of the codebase. Therefore, a find_files_with_con-
tent(regex) function was added. By testing this new function with the LLM, it was observed
that it was heavily utilised, especially within codebases that feature a microservice architec-
ture, where parts of a feature are implemented in different services.

The following list hints the entire functionality exposed to the LLM:

• list_files_in_directory(path): Lists all files and directories in the given path. This in-
cludes hidden files and works non-recursively.

• list_files_in_root_directory(): Lists all files and directories in the root directory. This
includes hidden files and works non-recursively. It is a wrapper around list_files_in_-
directory("/") to make it easier to call.

• get_file_content(path): Reads the content of a file. Consider using get_specific_file_-
content(path, regex) to get an overview of the file and query it for specific information.

• get_specific_file_content(path, regex): If the file is a source-code file, it will query
the file for the given regex. The LLM can suggest a regex, e.g. to list all functions
or classes in the file. This is useful to get an overview of the file without reading the
entire content. The regex should be a string, e.g. def\s+\w+\s*\(.*\): to match all
function definitions in Python files.

• find_files_with_content(regex_or_str): Lists all file paths in the codebase where their
content contains the given regex or string. The content should be a string or a regex,

https://github.com/DeDeveloper23/codebase-mcp

CHAPTER 4. PROBLEM SOLUTION 39

e.g. "translation|i18n" to match all occurrences of the string "translation" or "i18n" in
the codebase.

The configuration for this MCP Server consists of the absolute path to the SUT’s code-
base folder, provided by the Tauri backend process when a request is made to invoke an
agent.

Swagger Explorer MCP Server

The Swagger Expolorer MCP Server exposes the SUT’s API documentation in the Swagger/Ope-
nAPI format allowing the AI agent to programmatically retrieve a comprehensive overview
of the available endpoints, their parameters, expected responses, and usage semantics. This
structured access to the SUT’s interface enables the agent to reason about the system’s func-
tionality, e.g. for extracting the offered features, and automatically generate locust test files
tailored to the API’s behavior without needed to extract those endpoints from the codebase
or other documents. The agent that profits the most from this MCP Server is the Perfor-
mance Test agent. By leveraging this documentation, the agent constructs a fully functional
Locust test file without having to figure out how the SUT’s endpoints are used.

To avoid overwhelming the LLM by simply providing the swagger.json file as a whole,
the following abstractions were introduced, which enable the LLM to retrieve the required
information selectively.

• list_endpoints(): Lists all available endpoints in the server together with their invoca-
tion method, such as GET or PUT.

• describe_endpoint(path, method): Returns the description of a specific endpoint
when invoked using one of the available HTTP methods, such as GET or PUT

• list_endpoint_parameters(path, method): Returns the query parameters of a spe-
cific endpoint.

• describe_endpoint_security(path, method): Returns the security requirements of a
specific endpoint, i.e. if and how the user must be authenticated.

• list_endpoint_response_codes(path, method): Returns the response schema of a spe-
cific endpoint.

• describe_endpoint_response(path, method, response_code): Returns the response
schema of a specific endpoint for a specific response code, e.g. 200 or 404

• find_schema_models(): Returns the ORM model names used in the server.

• find_schema_model(model_name): Returns the fields of a specific ORM model.

The configuration of this MCP Server differs significantly from that of the other MCP
Servers presented in this section. Because the Swagger endpoint that exposes the definition
(swagger.json) is only accessible when the SUT is running, it would mean that the SUT
must always be reachable when any of the presented agents operate. To accommodate this,
the Desktop Application asks the user for an endpoint where the swagger.json file can be
accessed when configuring this MCP Server for the first time and then caches this definition
file in the SQLite database, thus eliminating the need for the SUT to be always running. By

CHAPTER 4. PROBLEM SOLUTION 40

applying this concept and providing the user with the possibility to update or re-download
the swagger.json file when needed, the nature of this MCP Server is therefore static rather
than dynamic. As a consequence, the Tauri backend must also submit the cached swagger
definition every time this MCP is used.

GitHub MCP Server

The GitHub MCP Server (https://github.com/github/github-mcp-server) is a power-
ful implementation of the Model Context Protocol (MCP) that enables seamless integration
between LLMs and GitHub’s extensive API ecosystem. Designed to enhance the capabili-
ties of AI agents, the server serves as a secure, structured interface through which LLMs can
perform a wide range of GitHub-related tasks, including querying repositories, managing is-
sues and pull requests, interacting with GitHub Actions, and even conducting code security
scans.

By exposing GitHub’s functionality through a standardised protocol, the MCP server al-
lows LLMs to gain deep contextual understanding of the system under test (SUT). For ex-
ample, an LLM can retrieve repository metadata, analyse commit histories, inspect CI/CD
workflows, and examine open issues or pull requests. This contextual awareness enables
the model to reason about the structure, behaviour, and performance characteristics of the
SUT in a way that would be difficult through static code analysis alone.

This integration is particularly valuable for generating automated performance tests.
The LLM can use the MCP server to identify performance-critical paths in the codebase,
such as frequently modified files, hot paths in workflows, or components with high issue
density, and then generate targeted performance tests, similar to the Codebase Explorer
MCP Server, just with less optimized exposed functionality when it comes to understand-
ing a project. It can also monitor CI/CD pipelines to detect regressions or bottlenecks and
suggest optimisations based on historical trends. Additionally, the server supports toolset
customisation, allowing developers to enable only the relevant GitHub APIs for a given task,
which helps streamline the LLM’s decision-making and reduces unnecessary context.

In terms of configuration, the performance tester must create a GitHub API Key with
read-only permissions for the targetted SUT’s repository and insert that key when asked in
the frontend. When sending the HTTP request to the Langgraph Agent HTTP Server, this
API key is also attached to the request body.

Atlassian MCP Server

The goal of this MCP Server is to extend the capabilities of the LLM by offering structured,
real-time access to project management and documentation data. This integration enables
an LLM-based agent to interact with Jira and Confluence through a standardized protocol,
allowing it to query, analyze, and act upon the information stored in these platforms.

From a SUT perspective, this integration is invaluable. Jira provides a rich source of
structured data about the development lifecycle, such as issue types, priorities, statuses,
user stories, and sprint progress, while Confluence offers unstructured but highly contex-
tual documentation, including design specs, meeting notes, and architectural decisions. By
accessing both, the LLM can build a multi-dimensional understanding of the SUT, encom-
passing not just the codebase, the CI/CD results, but also the intent, planning, and execu-
tion context behind it.

For example, using this MCP Server, the agent can:

https://github.com/github/github-mcp-server

CHAPTER 4. PROBLEM SOLUTION 41

1. Analyze Jira tickets to identify recurring performance-related issues or bottlenecks.

2. Correlate Confluence documentation with code changes to understand the rationale
behind architectural decisions.

3. Generate performance test cases based on historical bug reports, epics, or non- func-
tional requirements that were documented.

4. Summarize sprint retrospectives or planning documents to infer areas of technical
debt or performance risk.

Moreover, the MCP server supports natural language commands, enabling the agent to
perform tasks like "Find all unresolved performance bugs in the last two sprints" or "Sum-
marize the scalability section of the architecture doc." This empowers the LLM to act as a
context-aware assistant that can proactively extract features and understand the direction
the project is going to in the future.

For configuration, the performance tester must create an Atlassian API Key and fill out
the required information, including the workspace of the SUT. Similar to the GitHub MCP
Server, this information is sent along when submitting an HTTP request to the Langgraph
Agent HTTP Server.

4.5 Agent architectures

LangGraph builds upon the capabilities of LangChain, a framework designed to simplify
the development of applications powered by LLMs. LangChain provides abstractions for
managing prompts, memory, call chains, and integrations with external tools and APIs, in-
cluding the previously mentioned MCP Servers. It enables developers to construct complex
LLM-driven workflows by chaining together modular components such as language mod-
els, retrievers, and tools in a linear or branching sequence, thus allowing for a more dynamic
interaction with LLMs.

LangGraph extends this paradigm by introducing a graph-based execution model, al-
lowing for more flexible and dynamic control flows. While LangChain is well-suited for rel-
atively straightforward pipelines, LangGraph is designed for stateful, multi-agent systems
where the flow of execution may depend on intermediate results, agent decisions, or exter-
nal signals. In contrast to workflows, where the order of steps is well defined in advance,
agents can build their own plan to solve a specific problem. This is of exceptional value for
the proposed tool as the quality of the codebase of the SUT may vary a lot and depending on
the connected MCP Servers, the contextual understanding of every aspect of the SUT can-
not be assured, therefore the AI requires much more freedom in how it interacts with the
provided resources. In LangGraph, each node in the graph represents a computational unit,
often an agent or function, and edges define the possible transitions between these units
based on the evolving state.

This architecture is particularly advantageous for automating performance testing, where
tasks such as test generation, execution, monitoring, and analysis must be coordinated in a
non-linear, adaptive manner depending on the SUT. LangGraph enables agents to operate
autonomously while maintaining shared context, supporting asynchronous execution, and
allowing for conditional branching and iterative refinement. By building on LangChain’s
foundational abstractions and extending them with graph-based orchestration, LangGraph

CHAPTER 4. PROBLEM SOLUTION 42

revealed itself as a highly suitable approach for constructing intelligent agents that auto-
mate performance tests while handling complex workflows with minimal human oversight.

4.5.1 Fundamental agent architecture

To avoid reinventing the wheel, the architecture for all implemented agents relies on a mod-
ified version of the ReAct architecture. This will be illustrated below, along with the modifi-
cations made to it to ensure it operates within the scope of performance testing.

The ReAct architecture

The ReAct architecture consists of four nodes: a START and an END node, a Thinking node
and a Tool node as shown in Figure 4.6. It is a framework designed to enable agentic AI
systems to perform complex reasoning and decision-making by interleaving two core capa-
bilities: reasoning and acting. In this paradigm, agents are structured to alternate between
generating internal thoughts (reasoning) and invoking external tools or functions (acting),
thereby allowing them to iteratively refine their understanding of a task and take informed
actions. This approach has proven effective in scenarios that require both cognitive plan-
ning and interaction with external systems or environments.

LangGraph extends the ReActparadigm by introducing a graph-based execution model,
which comes pre-compiled with LangGraph and in which the agent’s behaviour is repre-
sented as a directed graph. Each node in the graph corresponds to a specific phase in the
agent’s reasoning (Thinking node) or action (Tool node) process, and a shared, mutable
state governs transitions between nodes. This structure allows for flexible, stateful work-
flows that can adapt dynamically based on intermediate results.

The typical state of the ReAct architecture looks like this:

• messages: List<Message>

The START node initialises the agent’s state by creating an empty array for the messages
list and determines the first transition. The Thinking node is responsible for internal delib-
eration, where the agent evaluates the current context, interprets previous outputs gained
from the messages list in the state, and decides on the next step. If an external action is re-
quired, control is passed to the Tool node, where a specific tool or function is executed. The
output of this tool is then incorporated into the state, added to the end of the messages list,
and the agent returns to the Thinking node for further reasoning. This loop continues until
the agent determines that it has completed the task, at which point the END node is reached
and the final output is generated.

The state plays a central role in this architecture. It is a structured data object that per-
sists across node transitions and accumulates all relevant information, including the initial
input, a history of thoughts and actions, tool outputs, and any intermediate data required
for decision-making. This persistent memory enables the agent to maintain context, adapt
its strategy based on prior outcomes, and ensure coherence throughout the reasoning pro-
cess.

Although the ReAct architecture provides a robust foundation for agentic workflows,
modifications are often introduced to tailor it to specific domains or tasks, such as perfor-
mance testing. A modified version of this architecture is employed in the present work and
will be described in detail in the following section.

CHAPTER 4. PROBLEM SOLUTION 43

Figure 4.6: ReAct Agent Architecture

Modifications to the ReAct architecture

The core concept of the ReAct architecture works perfectly for all the agents implemented
within this project. However, some improvements are necessary to enhance the output
quality and to address the undefined nature of the SUT, as all agents must be capable of
performing their tasks even if some of the configured MCP Servers return insights of poor
quality or with a low level of detail.

First, the ReAct architecture was modified to limit the number of executions of the
Thinking node. During implementation, the agents were tested with real projects to en-
sure that they function correctly. It was observed that agents built on the ReAct architecture
tend to over-analyse the SUT. For example, when the agents used the Codebase Explorer
MCP Server, they tended to read every single file in the codebase for specific projects to gain
the most comprehensive understanding possible. However, this behaviour is completely
infeasible for the analysis tasks they are supposed to carry out. By limiting the number of
invocations for the Thinking node and providing the LLM with the information on how
many calls are still allowed, the LLM was forced to consider which files are worth reading
and which files should be skipped. As a result, the agent execution times were significantly
reduced, and the output quality was substantially higher, most likely because the context
window (the list of messages stored in the graph’s state) was less cluttered with irrelevant in-
formation. A downside of this approach is finding a suitable threshold for the limit for each
agent. This was achieved by testing different limits on different sizes of SUT codebases.

Next, the state of the architecture was expanded again by introducing a new field, called
next_step. Given that the data quality of the MCP Servers is unknown and that the SUTs
can differ significantly in terms of architecture, domain, and complexity, the agent must
develop a plan on its own to achieve the desired output. It must compare the quality of
each connected MCP Server and find ways to combine information from different sources
in a way that allows it to still reason with the data and draw logical conclusions. During de-
velopment, it was observed that the agent often gets lost in details, thus being incapable of
completing the required task. To prevent that, the agent was forced to plan its steps ahead so

CHAPTER 4. PROBLEM SOLUTION 44

that it would not miss the overall goal of its execution. Every time the Thinking node is in-
voked, the agent is required to respond with a JSON that allows it to override its next planned
step. In addition, the prompt that the LLM is given every time always contains the current
value of the next_step field in the state, together with the number of remaining executions
available for the Thinking node and a repeated explanation of the expected results. By con-
sistently adding this "reminder" to the messages array and thereby pushing it into the LLM’s
context window repeatedly, it can effectively plan its steps based on the remaining execu-
tion limit, with the overall goal in mind. The consequence is that the agent is much more
likely to complete its task within the given limit, and its actions are much more thought-
through. This change also allowed for the usage of the GPT-4.1-mini model for the SUT
analysis tasks instead of the regular GPT-4.1 model, which provides a more cost-effective
solution and given the larger input and output token limits of the GPT-4.1-mini model, the
results turned out to be even better than using the regular GPT-4.1 model, mainly because
the analysis phase is all about gathering and combining already present information from
the MCP Servers.

Furthermore, the state was extended to feature a done field. This allows the agent to
break out of the thinking loop as soon as it deems the task to be finished and sets the done
flag to true. In addition to the already described termination condition, i.e., when the limit
of executions of the Thinking node is reached, this allows the agent to return early, thus
saving tokens and preventing the results from worsening if the agent is forced to continue
until the limit is reached.

Lastly, the router that handles the edges between the Thinkingnode and the Reasoning
node was changed. In the ReAct architecture, every call to the Thinking node must be fol-
lowed by a call to the Tool node. However, given the previously applied changes, it now
makes sense to remove the necessity for a Tool node call between two Thinking node
calls. Since the LLM can now plan its next step and store it within the graph’s state, an-
other edge can be added to the graph that allows for transitioning from the Thinking node
to the Thinking node again, effectively creating a smaller cycle. It must be noted that the
execution limit will still be reduced by one even when the LLM chooses to skip the Tool
node call in between.

These changes result in the following enhanced state of the modified architecture:

• messages: List<Message>

• thinking_limit: number

• done: boolean

• next_step: string

The final graph of the modified architecture is presented in Figure 4.7, which serves as a
reference for all implemented agents.

4.5.2 Agents overview

An overview of the designed agents was already given in section 4.4.3. However, in this sec-
tion, the interaction between these agents will be explained, focusing on how data is passed
between them by laying out the input and output data of each agent. For better visualisa-
tion, an enumerated list is presented that highlights the execution order step by step.

CHAPTER 4. PROBLEM SOLUTION 45

Figure 4.7: Modified Agent Architecture

1. Initial configuration

• The performance tester is asked to describe the SUT in 1-2 sentences to provide
a starting point for the first agent to work with. In addition, the tester configures
the Codebase Explorer MCP Server and other MCP Servers of choice

2. Invocation of the Project Purpose agent

• Input: The 1-2 sentences provided in step 1

• Output: A detailed paragraph explaining what purpose the SUT serves (a de-
tailed description)

3. Invocation of the Project Insights agent

• Input: The project’s name and the result gained in step 2

• Output: The project’s tech-stack and information about the project’s authenti-
cation mechanisms, if present, like username and password or phone number

4. Invocation of the Project Features agent

• Input: The project’s name and the result gained in step 2

• Output: A list of the project’s features

5. Human input

• The performance tester selects a feature which will be the focus of the generated
performance test. The user can select another feature later to create additional
performance tests that focus on other parts of the SUT

6. Invocation of the Feature Difficulties agent

• Input: The project’s name, the result gained in step 2 and details about the fea-
ture under test (FUT) gained in step 4

• Output: A list of possible difficulties that may cause performance issues when
users interact with the FUT

CHAPTER 4. PROBLEM SOLUTION 46

7. Invocation of the Feature Scenarios agent

• Input: The project’s name, the result gained in step 2, details about the FUT
gained in step 4 and a list of possible difficulties gained in step 6

• Output: A list of fictive scenarios that each describe one way in which a user may
interact with the FUT. Given that the list of difficulties is also provided, the agent
will prefer scenarios that particularly involve triggering such a difficulty

8. Invocation of the Project Environment agent

• Input: The project’s name, the result gained in step 2 and the results gained in
step 3

• Output: A docker-compose.yml file and one or more Dockerfiles depending on
the SUT’s architecture. This effectively dockerises the SUT to make it compati-
ble with PPTAM. Additionally, an endpoint is extracted where the project’s web
server will be accessible.

9. Human input

• The Project Environment agent only sets up the local environment. If the tester
wants to carry out a performance test on the staging or production environment,
those environments must also be configured; however, no agent is provided in
this case to automate the process.

10. Human input

• The performance tester selects a goal for the performance test, such as Load
Testing, Stress Testing, Endurance Testing, etc.

11. Invocation of the Performance Test agent

• Input: The project’s name, the result gained in step 2, information about the
FUT gained in step 4, a list of difficulties gained in step 6, a list of sample scenar-
ios gained in step 7, technical insights gained in step 3, information about the
goal of the performance test gained in step 10 and an endpoint where the SUT is
reachable (step 8 or step 9)

• Output: A Python locust file that implements the performance test

12. Invocation of the PPTAM Wrapper agent

• Input: The project’s name, the result gained in step 2, information about the FUT
gained in step 4, the locust file generated in step 11 and information about the
goal of the performance test gained in step 10

• Output: A configuration for PPTAM that describes how it should handle the ex-
ecution of the performance test for the SUT

13. Human input

• The performance tester can review the gathered results so far and make modifi-
cations as necessary. Then, the generated performance test is executed by click-
ing on the Execute button

CHAPTER 4. PROBLEM SOLUTION 47

14. Background process

• The generated performance test is sent to the PPTAM HTTP server and executed.
The raw results/metrics are sent back to the Tauri application and stored in the
SQLite database

15. Human input

• The performance tester inputs the operational profile of the SUT must fulfil

16. Invocation of the Result Interpreter agent

• Input: The project’s name, the result gained in step 2, information about the
FUT gained in step 4, the defined operational profile gained in step 15 and the
raw performance test results gained in step 14

• Output: A report describing the results of the performance test

4.5.3 Agents implementation

This subsection discusses the implementation of the individual agents with respect to the
fundamental, modified ReAct architecture.

Project purpose agent

This agent takes as input the name of the project and one or two sentences of description
provided by the performance tester. This brief description will already guide the agent in
examining the project as a whole without delving into particular details, which was discov-
ered during implementation to be a problem when no starting point for the agent was given.
In terms of architecture, the graph of the modified ReAct architecture shown in Figure 4.7
was applied. However, the state of this agent was extended to allow the agent to refine the
project’s purpose with each iteration. This method ensures that a valid result is always avail-
able even when the execution limit is hit.

The updated state looks like this:

• messages: List<Message>

• thinking_limit: number

• done: boolean

• next_step: string

• purpose: string

Note that the agent leverages all configured MCP Servers to gain information about the
project’s purpose. Every time the Thinking node is executed, it returns a JSON that up-
dates the next_step, done, and purpose fields in the state if these fields are present in the
returned JSON. As soon as the agent finishes, the purpose value from the state is returned.

CHAPTER 4. PROBLEM SOLUTION 48

Project insights agent

The task of this agent is to examine the technical details of the project, specifically the tech
stack and authentication mechanisms. These results are of high interest for the Project Envi-
ronment agent and the Performance Test agent. By understanding the tech stack first, the ac-
curacy of the later-generated Docker configuration was observed to be significantly higher.
Additionally, the authentication mechanisms guide the creation of the locust file to ensure
that endpoints requiring authentication are called correctly. Since many projects leverage
already existing authentication frameworks, the order of analysis of these two properties is
essential. By analysing the tech stack first, possible authentication frameworks can already
be identified and analysed more deeply in a second inspection step to understand how they
are configured. Given this dependency, the agent’s architecture was changed to resemble
this restriction. Effectively, two modified ReAct agents were sequentially connected, where
the first one focuses on understanding the tech stack and the second one focuses on under-
standing the authentication mechanisms. Figure 4.8 displays the architectural graph of this
agent.

The state used for this agent is identical to the one used for the modified ReAct archi-
tecture. However, since this agent must fulfil two almost independent tasks, two additional
state initialiser nodes were inserted. When called, these update the state by setting the done
flag to false, setting next_step to an empty string and setting thinking_limit to a value
suitable for each of the two analysis phases. Unlike in the Project Purpose agent, where
an additional field was introduced to keep track of the current state, this agent uses long-
term memory tools to keep track of its progress. Since the tech stack and the authentication
mechanisms are structured data of possibly large volume that must be collected from across
the codebase, likely requiring the agent to investigate deeply into source code files, the risk
of cluttering the context window of the LLM would be extremely high using the approach
described in the previous agent. Having a message inserted every time the Thinking node
is executed with all values of the fields in the state unnecessarily fills up the AI’s context win-
dow. Therefore, it makes much more sense to give the LLM the capability to read and write
those insights into an external data structure managed using the long-term memory ap-
proach. Effectively, it can be seen as providing the LLM with a CRUD api to manage its state.
Thus, whenever the current state tends to leave the LLM’s context window, it can decide on
its own to re-read the current state, thereby pushing it again into its context window.

Those long-term memory functions are added to the already existing functions pro-
vided by all connected MCP Servers. They are represented by the Tool node in the respec-
tive agent’s architecture graph. Since both Thinking nodes have access to the same tools,
the Thinking node in the authentication analysis phase can also access the results of the
Thinking node of the tech stack analysis.

The exposed long-term memory functions are:

• get_techstack(): Returns the current tech stack of the project as a comma-separated
string

• add_to_techstack(item): Adds an item to the tech stack of the project

• remove_from_techstack(item): Removes an item from the tech stack of the project

• get_authentication(): Returns the current authentication description of the project

CHAPTER 4. PROBLEM SOLUTION 49

Figure 4.8: Project Insights Agent Architecture

• set_authentication(method): Sets the authentication method for the project. A string
that explains how the project implements authentication is passed

• get_authentication_schema(): Returns the current authentication schema of the project.
A comma-separated list of what fields are needed to authenticate a user, e.g. user-
name, password, phonenumber, ...

• set_authentication_schema(fields): Sets the authentication schema for the project. A
list of required fields is passed that a user needs to authenticate

Project features agent

The Project Features agent is executed to extract the various features implemented by the
SUT from a domain perspective. The goal is to identify independently testable features by
creating a list with the following properties for every feature:

1. name: The name of the feature.

CHAPTER 4. PROBLEM SOLUTION 50

2. description: A brief description of the feature.

3. value: The value that this feature provides to the user when using it.

4. importance: The importance of this feature for the project. Acceptable values are
"high", "medium" or "low".

5. references: A list of references related to this feature, e.g. files in the code or JIRA tick-
ets.

6. icon: An emoji to represent the feature, must be a single emoji, used for visualisation
purposes in the frontend.

The architecture and the state for this agent are identical to the modified ReAct architec-
ture shown in Figure 4.7. However, just like in the Project Insights agent, long-term memory
tools were appended to the tools provided by all connected MCP Servers to allow the agent
to modify the list of features during the thinking phase.

The long-term memory tools are composed of

• get_features(): Returns the names of all features as a comma-separated string

• get_feature_by_name(name): Returns the properties of a specific feature identified by
its name.

• add_feature(name, description, value, importance, references, icon): Adds a feature to
the long-term memory

• remove_feature(name): Removes a feature identified by its name

• update_feature(name, description, value, importance, references, icon: Updates a fea-
ture’s properties identified by its name. Only the fields requested to be updated must
be provided; None can be used to skip updating a specific property, thus allowing the
LLM to concentrate on one specific aspect of a feature.

These functions are optimised to be used by the AI to continuously refine the feature
analysis while exploring the context provided by the MCP Servers. It provides a way for the
LLM to query its memory in a fine-grained manner, keeping the impact on the context win-
dow as minimal as possible, while also granting write access, which allows for modification
of individual properties to minimise confusion with the values of other properties.

Feature difficulties agent

This agent aims to identify potential issues with the implementation of a given feature that
may lead to performance issues. This analysis serves as a baseline for the Feature Scenarios
agent, guiding it to create scenarios that are more likely to uncover bottlenecks and identify
problems with the SUT’s resource usage. It applies the modified ReAct architecture pre-
sented in Figure 4.7, together with its state. Moreover, the agent has access to the Codebase
Explorer MCP Server to identify implementation issues, as well as all additional connected
MCP Servers, to identify conceptual problems with a feature. Like the previous agent, this
agent also leverages the use of long-term memory tools to manage its analysis progress step
by step using the following CRUD functionality:

CHAPTER 4. PROBLEM SOLUTION 51

• get_difficulties(): Get the names of all difficulties

• get_difficulty_by_name(name): Get a difficulty’s description by its name

• add_difficulty(name, description): Add a difficulty to the list of difficulties

• remove_difficulty(name): Remove a difficulty by its name

• update_difficulty(name, description): Update a difficulty’s description by its name.

Feature scenarios agent

To generate a locust file that covers the entire flow of how a user interacts with a feature, it is
crucial first to consider how a fictitious user might interact with the given feature. To accom-
modate this, the Feature Scenarios agent was developed to generate fictitious user flows that
describe, step by step, the actions a user performs during the usage of the specified feature.
The modified ReAct architecture was therefore enhanced using long-term memory tools to
allow the agent to work on the scenarios while exploring the feature iteratively.

The long-term memory consists of the following functions:

• get_scenario_names(): Returns a list of the names of all scenarios

• get_scenario_by_name(name): Returns the scenario with the given name

• add_scenario(name, user, description): Adds a new scenario with the given name, user,
and description. The user is represented by a sample name of a user performing the
described scenario. The description is a list of events that the user performs in this
scenario, one after another.

• update_scenario(name, user, description): Updates an existing scenario with the given
name. Only the provided fields that are not None are updated

• delete_scenario(name): Deletes the scenario with the given name

Project environment agent

The goal for this agent is to dockerize the SUT to make it compatible with PPTAM. PPTAM
uses a measure_docker_stats plugin to gain insights into execution metrics of the SUT,
which requires the SUT to be runnable with Docker. The architecture of this agent em-
ploys the modified ReAct architecture with its state and has only access to the Codebase
Explorer MCP Server in combination with long-term memory tools to work on the build
files required by Docker (Dockerfiles) and the docker-compose.yml. Additionally, the
endpoint is extracted where the SUT’s web server will be accessible locally when executed
using Docker.

The LLM can interact with the long-term memory using the following API:

• get_dockerfiles(): Return the paths of all Dockerfiles in the project.

• get_dockerfile(path): Returns the current Dockerfile at the given path. If the file al-
ready exists, it will return its content; otherwise, it will check if a Dockerfile for the
given path has already been created and return that one instead. Alternatively, an
error message is returned

CHAPTER 4. PROBLEM SOLUTION 52

• set_dockerfile(path, content): Sets the Dockerfile content for a specific Dockerfile at a
given path

• get_docker_compose(): Returns the current Docker Compose file content for the project

• set_docker_compose(content): Sets the Docker Compose file content for the project

• get_base_endpoint(): Returns the base endpoint where the project is hosted locally,
e.g. http://localhost:8000

• set_base_endpoint(endpoint): Set the base endpoint where the project is hosted lo-
cally

Performance Test agent

PPTAM relies on a Locust file for execution. A Locust file is a Python script that de-
fines how virtual users behave during a load test using the Locust framework, which PPTAM
uses under the hood. It describes the actions users take, such as visiting web pages, sub-
mitting forms, or interacting with APIs, and how often they perform these actions. The file
includes user classes that simulate different types of users, tasks that represent specific be-
haviours, and optional wait times to mimic realistic user pacing. This setup enables testers
to simulate real-world usage patterns and measure a system’s performance under load.

This agent is tasked with creating such a Locust file, primarily by considering the
previously generated scenarios, information about the feature under test, the goal of the
performance test (e.g., Stress Testing), and technical insights, such as authentication
mechanisms. This agent, like most of the other agents, is also fully implemented using the
modified ReAct architecture. However, unlike other agents, this agent not only uses long-
term memory tools for managing its output, but also leverages debugging and knowledge
shelf tools.

To verify that a given endpoint works as described in the documentation or Swagger
definition, the agent was equipped with a debugging tool, allowing it to perform REST API
calls independently, thus the agent can ensure that the generated Locust file is compat-
ible with the exposed REST API of the SUT. As a consequence, the SUT must be running
when this agent is executed, which is ensured by the Desktop Application.

This debugging tool was exposed to the LLM in the following was:

• def call_api_endpoint(endpoint, method, headers, body, timeout): Call an API end-
point with specific request data, such as the request method (e.g. GET or POST), the
HTTP headers, a specified request body if applicable and a timeout in seconds.

Since the agent takes as input most of the results of previous agents, it is infeasible to
pass these results to the AI within the initial or thinking prompt due to the large volume of
data. As a solution, knowledge-shelf tools were developed that function similarly to long-
term memory tools without exposing their functionality to the AI, allowing it to override
those values. The LLM can query the results from previous agents on demand and utilise
long-term memory tools to write the Locust file simultaneously.

The knowledge-shelf tools provide structured access to the following information, utilis-
ing an interface already presented in previous agents; however, without the setter or updater
functions:

• Scenarios

CHAPTER 4. PROBLEM SOLUTION 53

• Tech stack

• Authentication mechanisms

• Performance test goal

• Feature under test

• Endpoint where the SUT is accessible

The long-term memory tools are the following:

• get_locust_file(): Returns the current locust file for performance testing the project

• set_locust_file(file_content): Sets the locust file for performance testing the project

The final Locust file is returned after the agent execution terminates.

PPTAM wrapper agent

The purpose of this agent is to define the execution environment in which the locust file
will be executed using PPTAM. PPTAM traditionally requires a configuration.ini file for
setup. To make this process more dynamic and to allow the Desktop Application to start a
PPTAM test execution dynamically for various generated performance tests, it was wrapped
with an HTTP Server that can accept a configuration within the request body. Therefore,
the task of this agent is to generate such a configuration based on the Locust file and the
defined goal of the performance test. The modified ReAct architecture was employed in
combination with long-term memory tools that allow the agent to create such a configura-
tion. The long-term memory tools expose the following functionality:

• get_test_plan(): Returns the test plan for the PPTAM Load Testing Tool in a readable
format as a string

• add_step(step, load, spawn_rate_per_second, run_time_in_seconds): Adds a test to the
test plan at the given index (step) or the end if step is None.

• remove_step(step): Removes a step from the test plan

When the performance test is executed, the generated test plan, along with the project’s
name, endpoint, and directory path, is sent to the PPTAM HTTP Server, which then runs the
performance test according to the generated plan.

Result interpreter agent

The last step in the execution flow is to interpret the performance test results. Therefore, the
Result interpreter agent was developed. It takes as input the already generated information
about the project, the feature under test, the goal of the performance test, as well as the
operational profile and the raw performance test results. The ultimate goal of this agent
is to write a report that evaluates the results of the executed performance test and places
them in context with the specified operational profile. To do that, this agent also relies on
the modified ReAct architecture and leverages its state. Just like explained for other agents,
this agent has its suite of long-term memory tools, knowledge-shelf tools and math tools.

To work on the report, the agent uses the following long-term memory tools:

CHAPTER 4. PROBLEM SOLUTION 54

• get_report_sections(): Return the titles of all sections in the report.

• get_report_section_by_title(title): Return the content of a section by its title. This al-
lows the report to concentrate on one particular section during generation

• add_section_to_report(title, content, position): Add a section to the report. If position
is not None, the new section can be inserted between other sections

• update_report_section(title, content): Update an existing section in the report

• delete_section_from_report(title): Delete a section from the report

• get_report(): It was observed that the agent can benefit from reading the entire report
at once, especially when it decides to perform a quality analysis

To allow the agent to access the raw test results and the operational profile at any time
while looping over the Thinking node, that data is made accessible with knowledge-shelf
tools.

During the implementation of this agent, it was observed that the agent struggles with
performing mathematical assessments, particularly when comparing raw test results with
values defined in the operational profile and when drawing conclusions from the raw test re-
sults. To accommodate this weakness, the agent was provided with a tool to perform Python
operations during execution. This allows it to perform any mathematical evaluation using
the Python interpreter.

4.6 Solutions mapped to problems

This section provides a structured mapping between the requirements defined in Section 2.2
and the corresponding elements of the developed solution described in this chapter. The
goal is to demonstrate how each requirement, whether goal-oriented, domain-specific, pro-
duct-related, or design-driven, has been addressed through specific architectural decisions,
agent implementations, or user interface features.

4.6.1 Requirements-Solution Mapping

Table 4.1 presents a comprehensive mapping of all requirements to the respective solution
components. Each requirement is categorised according to the schema introduced in Sec-
tion 2.2 and linked to the part of the system that fulfils it.

4.6.2 Tactics–Solution Mapping

In addition to requirement fulfilment, the system design also incorporates several architec-
tural and design tactics to ensure usability and robustness. Table 4.2 outlines how these
tactics are realised in the solution.

CHAPTER 4. PROBLEM SOLUTION 55

Table 4.1: Requirements-to-Solution Mapping

Type Requirement Mapped Solution Component

Goal Developer wants to avoid perfor-
mance issues

End-to-end automation via agentic
AI; minimal manual intervention

Domain Developer wants to avoid spending
time on performance tests

Scenario generation, execution, and
analysis, fully automated by agents

Developer wants clear instructions to
fix issues

Result Interpreter Agent generates
actionable reports

Customer wants quick resolution of
performance issues

Continuous re-execution of tests; fast
feedback loop

Customer wants issues fixed before
deployment

Integration with local/staging/pro-
duction environments via PPTAM

Product AI-based solution for test generation,
execution, and analysis

LangGraph agents and MCP servers
orchestrated via Tauri UI

Configurable solution for different
software types

Modular MCP server architecture;
user-configurable endpoints

Understandable AI behaviour Modified ReAct architecture with
transparent reasoning steps

Obtainable result reports Result Interpreter Agent outputs
structured, human-readable reports

Design Implemented in Python All agents and MCP servers devel-
oped in Python

Minimal user input; use existing arte-
facts

Codebase, Swagger, GitHub, Jira MCP
servers provide context

Use LangGraph for scenario genera-
tion

All agents implemented using Lang-
Graph

Use PPTAM for test execution PPTAM wrapped in HTTP server and
integrated into Tauri app

Generate reports with performance
issues

Result Interpreter Agent produces de-
tailed performance reports

CHAPTER 4. PROBLEM SOLUTION 56

Table 4.2: Tactics–Solution Mapping

Tactic Purpose Implemented In

Automation Reduce manual effort in per-
formance testing

Agentic AI for scenario genera-
tion, execution, and analysis

Modularity Enable extensibility and main-
tainability

MCP server architecture; sepa-
rate agents for each task

Human-in-the-loop Allow user intervention at key
stages

Tauri UI prompts user to review
agent outputs

Context-awareness Improve AI reasoning with rich
context

Integration with codebase,
Swagger, GitHub, Jira via MCP

Transparency Make AI decisions understand-
able

Modified ReAct architecture
with next_step and thinking_-
limit

Reusability Enable repeated test execution Re-execution of tests without
regenerating scenarios

Scalability Support different system sizes
and architectures

Architecture-independent
design; Docker-based deploy-
ment

Chapter 5

Evaluation

This chapter describes the evaluation of the developed proposed solution and, in particular,
the implemented AI agents using a descriptive, scenario-based approach. Therefore, the
developed tool will be executed on two suitable real-world open-source applications.

5.1 Evaluation objectives

To comprehensively assess the capabilities of the developed tool, the evaluation focuses
on several key aspects that reflect both its technical performance and agentic behaviour.
Specifically, the objectives are to evaluate:

1. Outputs of all implemented agents: Assessing the relevance, diversity, and complete-
ness of the outputs of the implemented agents

2. Autonomy and Decision-Making: Analysing the agents’ ability to independently se-
lect meaningful sources where to find the required information, their ability to reason
about them and how they adapt their behaviour based on the structure and charac-
teristics of the target application.

3. Scalability: Evaluating how well the tool performs across applications of varying com-
plexity, from small codebases to large-scale systems, and its ability to maintain effec-
tiveness under increased workload.

In addition to standard evaluation, fault injection techniques and controlled modifica-
tions will be applied to the selected codebases. These modifications will introduce mis-
leading or ambiguous information, such as altered documentation or additional folders for
microservices, without changing the actual behaviour of the system under test (SUT). This
will enable an assessment of how well the agents can handle imperfect or deceptive input,
as often found in the industry, e.g., when documentation becomes outdated, while main-
taining robustness in their decision-making and scenario generation processes.

5.2 Repository selection

To ensure a realistic and meaningful evaluation of the developed tool, two open-source
microservice-based applications were selected from the DeathStarBench 1 benchmark suite.

1https://github.com/delimitrou/DeathStarBench

57

https://github.com/delimitrou/DeathStarBench

CHAPTER 5. EVALUATION 58

DeathStarBench is a widely recognised collection of real-world, cloud-native applications
designed to evaluate the performance of distributed systems. The selected repositories
were chosen based on their architectural complexity, relevance to performance testing, and
alignment with the evaluation objectives outlined in the previous section.

The following criteria guided the selection process:

1. Microservice Architecture: The repositories should consist of multiple interacting
services to test the tool’s ability to generate complex, multi-step performance scenar-
ios.

2. Realistic Workloads: The applications should simulate real-world user behaviour and
data flows.

3. Scalability: The codebases should vary in size and complexity to assess the tool’s scal-
ability.

4. Modifiability: The repositories should allow for controlled modifications and fault
injection without altering the core logic of the system under test (SUT). Therefore,
documentation must be present that can be changed.

Based on these criteria, the following two repositories were selected:

1. Scenario 1 - Hotel Reservation:

• This application simulates a hotel reservation system that handles ten services,
including user authentication, room availability, payment processing, and reser-
vation management. It provides a well-defined REST API and realistic user work-
flows, making it suitable for evaluating the tool’s ability to generate meaningful
performance test scenarios and handle service dependencies.

2. Scenario 2 - Social Network:

• The social network application models a modern social media platform, includ-
ing services for user profiles, timelines, media storage, and social interactions
(e.g., likes, follows, posts). Its larger scale and more complex service interactions
make it ideal for testing the tool’s scalability and the agentic AI’s decision-making
capabilities.

While both applications are built on microservice architectures and represent realis-
tic cloud-native workloads, they differ significantly in structure and complexity, which is
valuable for a comprehensive evaluation. The hotel reservation system is relatively minor
and linear in its service interactions, making it suitable for evaluating the tool’s baseline
performance and scenario generation in a controlled environment. In contrast, the social
network application features a more intricate and interconnected service graph, with asyn-
chronous communication patterns and higher concurrency. This complexity challenges the
tool’s scalability, the agents’ ability to reason about indirect dependencies and possible per-
formance bottlenecks, and the robustness of scenario generation under more chaotic con-
ditions. These differences allow for a comparative analysis of how the tool performs across
varying levels of system complexity and interaction density.

CHAPTER 5. EVALUATION 59

5.3 Experimental setup

To ensure a fair and consistent evaluation across both selected systems, the experimental
setup was carefully designed to minimise variability and enhance comparability. The tool
was configured to operate in a controlled environment, using the same contextual resources
and similar configurations for both the hotel reservation and social network applications.

In particular, both projects were configured to use only the Codebase Explorer MCP
Server as the sole context provider. This decision was made to isolate the evaluation to the
agents’ ability to reason and act based solely on static code analysis, without the influence of
runtime data or external documentation. Since both projects can be found within the same
DeathStar repository on GitHub, alongside other applications, it was deemed infeasible to
connect the GitHub MCP Server. Additionally, none of the selected SUTs expose a Swagger
endpoint or utilise Atlassian tools for project management; therefore, the respective MCP
Servers were also not connected.

By standardising the context source, the evaluation can more accurately reflect differ-
ences in agent behaviour depending on the SUT, since all agents for both projects only have
access to one view of the project, namely the codebase.

This setup allows for a direct comparison of how the tool performs across two distinct
microservice architectures.

Furthermore, all Docker-related files were removed to test the agents’ ability to recon-
struct them solely based on the documentation and source code.

The following subsections outline how the developed tool was configured for each project
individually.

5.3.1 Hotel Reservation

Two faults were injected into this project’s source code:

1. Modifications to the README.md

• The readme of this project lists the supported actions of the project, which are
three in total: Get profile and rates of nearby hotels available during given time
periods, recommend hotels based on user-provided metrics and place reserva-
tions. For the sake of testing the contextual understanding of the agents, one
more non-existent feature was added to the list: Hotels in the system can be
deleted or added by any user

2. Modifications to the folder structure

• The services directory houses the implementation of all microservices. An-
other folder was added, called chat. The purpose is to mislead the agents into
thinking that an eleventh microservice exists, offering a feature that is not de-
scribed anywhere in the documentation.

These modifications enable an understanding of the depth of analysis performed by the
various agents and to realise whether the agents prefer documentation inside the repository
or source code for inspecting the SUT. It also reveals whether the agents double-check the
information they collect.

Furthermore, the performance tester must provide one to two sentences of description
for the SUT, as described in the implementation sections, to provide a starting point for the

CHAPTER 5. EVALUATION 60

first agent. To avoid obfuscating the results and retain comparability between both selected
projects, a minimal one-liner was provided: The project is an implementation of a Hotel
Reservation system.

5.3.2 Social Network

The faults injected into this project attempt to mimic industry use cases, where documen-
tation is often sparse or not available at all. Therefore, the following fault was injected:

1. Modifications to the README.md

• This project also features a supported actions section in the readme, just like the
other project. However, instead of adding an invalid feature, this section was
deleted from the file, together with setup instructions and architectural deci-
sions. Just a paragraph describing the project was left in the file.

The README file is the only documentation within the codebase; therefore, no further
modifications to other files were necessary.

Regarding the starting point definition, a similar attempt was taken as described for the
Hotel Reservation system. The following description was provided: The project is an im-
plementation of a Social Network system.

5.4 Execution and collected results

This section provides a detailed description of how the tool was executed with both SUTs in
mind, revealing the results gained for each agent execution. Each SUT will be executed sep-
arately, generating a performance test that will be executed and evaluated by the proposed
tool. In terms of fault injection, the results of every agent will not be corrected after their
execution to understand how the tool as a whole reacts to the injected faults.

5.4.1 Hotel Reservation

The results of all agent executions will be laid out and analysed in terms of how they dealt
with the injected faults, as well as the SUT in general.

Project Purpose agent execution

After configuring the tool with the specification described in section 5.3, the next step is to
create a detailed project description using the Project Purpose agent. During execution, the
agent stores its thinking steps which are presented in Table 5.1.

This table outlines the sequential reasoning steps taken by an AI agent tasked with gen-
erating a comprehensive project description from a codebase. The agent begins by examin-
ing high-level documentation, such as the README.md, to establish an initial understand-
ing of the project’s purpose and scope. It then systematically explores the structure of the
codebase, focusing on the services directory, which houses the core microservices of the ho-
tel reservation system. By diving into specific service directories, namely recommendation,
reservation, and search, the agent identifies key implementation files, such as server.go,
and analyses their contents to understand the functionality and interdependencies of each

CHAPTER 5. EVALUATION 61

component. This iterative exploration enables the agent to develop a comprehensive under-
standing of the system, ranging from its general architecture to the detailed service logic.
Finally, it revisits the documentation to refine and validate its interpretation, ensuring its
accuracy.

The agent returned the following result as a description for the SUT:

This project is a comprehensive hotel reservation system implemented as a mi-
croservices architecture using Go and gRPC. It provides users with the ability
to search for hotels available during specific time periods, receive personal-
ized hotel recommendations based on various criteria such as proximity, rating,
and price, and place reservations. The system supports dynamic hotel manage-
ment, allowing users to add or remove hotels. It integrates multiple services in-
cluding user profiles, hotel ratings, reviews, geographic data, and chat function-
alities to enhance the overall booking experience. The reservation service effi-
ciently manages availability checks and booking processes using caching and
persistent storage. The recommendation service offers tailored hotel sugges-
tions to improve user decision-making. Overall, the project aims to deliver a
flexible, scalable, and efficient platform for hotel booking and recommenda-
tions, enhancing user experience and operational management for both cus-
tomers and hotel providers.

The agent clearly failed in handling the fault injections. In its generated description,
it suggests that a user can add or remove hotels from the system. Additionally, the agent
claims that a chat service exists, which is also a result of an injected fault.

Project Insights agent execution

The thinking steps of this agent are shown in Table 5.2. The Project Insights agent follows
a structured and methodical approach to analyse a codebase, identifying the technology
stack and uncovering authentication mechanisms. It begins by examining foundational
files, such as go.mod, to determine the core technologies used in the project, identifying
Go as the primary programming language, along with gRPC, MongoDB, Consul, Jaeger, and
Memcached. The agent then investigates the presence of containerization and orchestra-
tion tools by checking for directories like helm-chart and kubernetes, confirming the use of
Helm and Kubernetes. Further insights are gathered from the README.md file, which re-
veals additional components such as Docker, Docker Compose, and OpenShift. To ensure
completeness, the agent explores the services directory to detect any other frameworks or
technologies used in the microservices implementations. Once the tech stack is deemed
comprehensive, the agent shifts focus to authentication mechanisms as presented in the
implementation sections of this agent. It identifies that the system employs username and
password authentication with SHA-256 hashing and verifies this through the user service
proto files. To ensure no other mechanisms are in place, it examines other service direc-
tories and middleware for signs of token-based authentication, API keys, or multi-factor
authentication. After confirming the absence of such mechanisms, the agent finalises its
understanding of the authentication schema.

The final output of the agent is presented in Figure 5.1, illustrating that the agent iden-
tified tech stacks within microservices and also other software used, such as Docker.

CHAPTER 5. EVALUATION 62

Step Generated next_step
1 Read the README.md file to gather detailed information about the project’s

purpose and scope.
2 Explore the ’services’ directory to understand the different microservices imple-

mented in the project and their roles in the hotel reservation system.
3 Examine the README or main files within key service directories such as ’rec-

ommendation’, ’reservation’, and ’search’ to gain deeper insight into the specific
functionalities and value each microservice provides within the hotel reserva-
tion system.

4 Explore the ’services’ directory further by listing files in key service subdirec-
tories like ’reservation’, ’recommendation’, and ’search’ to identify main files or
documentation that can provide more insights into their specific roles.

5 Read the content of the ’server.go’ file in the ’services/reservation’ directory to
understand the implementation and role of the reservation service within the
system.

6 Explore the ’services/recommendation’ and ’services/search’ directories to un-
derstand how the recommendation and search functionalities are implemented
and contribute to the overall system.

7 Read the content of ’services/recommendation/server.go’ to understand how
the recommendation service works and contributes to the overall hotel reser-
vation system.

8 Explore the ’services/search’ directory, particularly the main service files, to un-
derstand how the search functionality is implemented and how it complements
the overall hotel reservation system.

9 Review the README.md and other documentation files for any additional high-
level descriptions or user-facing explanations to confirm and refine the purpose
statement.

Table 5.1: Thinking steps of the Project Purpose agent for the Hotel Reservation scenario

CHAPTER 5. EVALUATION 63

Step Generated next_step
1 I will start with checking the codebase for the tech stack.
2 I have identified the main programming language (Go), communication frame-

work (gRPC), database (MongoDB), service discovery (Consul), tracing (Jaeger),
and caching (Memcached) technologies from the go.mod file. Next, I plan to
check for any containerization or orchestration technologies such as Docker or
Kubernetes by looking into the helm-chart and kubernetes directories to con-
firm if they are part of the tech stack.

3 I have updated the tech stack with Helm and Kubernetes based on the presence
of helm-chart and kubernetes directories. Next, I plan to check the README.md
file for any additional technology mentions or confirmation of the stack compo-
nents.

4 I have updated the tech stack with Docker, Docker Compose, and OpenShift
based on the README.md file. The tech stack now includes Go, gRPC, Mon-
goDB, Consul, Jaeger, Memcached, Helm, Kubernetes, Docker, Docker Com-
pose, and OpenShift. I plan to check the services directory to see if there are
any other technologies or frameworks used in the microservices implementa-
tions to further refine the tech stack.

5 The tech stack has been comprehensively identified including Go, gRPC, Mon-
goDB, Jaeger, Consul, Memcached, Helm, Kubernetes, Docker, Docker Com-
pose, and OpenShift. No further steps are planned as the tech stack appears
complete based on the project files and description.

6 I will start with checking if the project has any authentication mechanisms.
7 I have identified that the project uses username and password authentication

with password hashing using SHA-256. Next, I plan to check other service di-
rectories, especially the user service proto files or any authentication-related
middleware or interceptors, to see if there are additional authentication mech-
anisms or details such as registration, token usage, or multi-factor authentica-
tion.

8 I have identified that the project uses username and password authentication
with password hashing using SHA-256. The user service proto confirms the au-
thentication schema with username and password fields. Next, I plan to check
other service directories or middleware for any additional authentication mech-
anisms such as token-based authentication or multi-factor authentication to
ensure completeness.

9 I will check the reservation service and other related services for any additional
authentication or authorization mechanisms, such as token validation or API
key usage, to ensure no other authentication methods are used in the project.

10 I have confirmed that the project uses username and password authentication
with SHA-256 hashing. There is no indication of other authentication mecha-
nisms such as OAuth, API keys, or multi-factor authentication. I will now final-
ize the authentication mechanisms and schema based on this information.

Table 5.2: Thinking steps of the Project Insights agent for the Hotel Reservation scenario

CHAPTER 5. EVALUATION 64

Figure 5.1: Results of the Project Insights agent for the Hotel Reservation scenario

Project Features agent execution

This agent must extract the features of the SUT, along with some metadata that provide
additional insights into each extracted feature. During execution, no next_step messages
were dumped. Two scenarios can explain this behaviour:

1. The agent did not use multiple invocations of the Thinking node and solely used the
passed results from other agents in its initial prompt

2. The agent did not populate the next_step field in the state.

However, when inspecting the final output of the agent presented in Figure 5.2, it be-
comes evident that the agent indeed used the available MCP Server for its analysis, given
the detail of information provided in the features’ descriptions.

Furthermore, the agent also outputted a Dynamic Hotel Management feature which,
based on its description, clearly results from the injected fault in the README file.

Selecting a feature

Further analysis will focus solely on the Hotel Search feature, which was previously identi-
fied. The performed steps from now on can be repeated for the remaining features as well,
but analysing all features in detail would go beyond the scope of this experiment.

CHAPTER 5. EVALUATION 65

Figure 5.2: Results of the Project Features agent for the Hotel Reservation scenario

CHAPTER 5. EVALUATION 66

Step Generated next_step
1 I have updated the difficulty related to Hotel Search performance under high

load with detailed potential bottlenecks. Since the main performance challenge
is identified and described, I plan to conclude the analysis for this feature.

Table 5.3: Thinking steps of the Feature Difficulties agent for the Hotel Reservation scenario

Figure 5.3: Results of the Feature Difficulties agent for the Hotel Reservation scenario

Feature Difficulties agent execution

In this step, the goal is to identify possible weaknesses within the implementation of the
selected feature. The agent successfully identifies a potential bottleneck caused by the mi-
croservice architecture as presented in Figure 5.7. In terms of thinking messages, Table 5.3
highlights that the agent outputs one message, indicating that it is done with its analysis.

Feature Scenarios agent execution

The execution of this agent demonstrates its ability to generate diverse and structured fic-
titious user scenarios based on the results of previous agents, each reflecting different user
behaviours and system interactions. The agent produced five distinct scenarios, visualised
in Appendix B.1.

Collectively, these scenarios cover a range of user intents and system responses, from
straightforward searches to more nuanced interactions.

CHAPTER 5. EVALUATION 67

Step Generated next_step
1 Review existing scenarios for completeness and consistency, then add any miss-

ing edge cases or user interactions related to the Hotel Search feature, such as
error handling for invalid date inputs or interaction with the recommendation
service after search results.

2 Review all existing scenarios for completeness and consistency one last time,
then finalize the scenarios for the Hotel Search feature as no further additions
are planned.

Table 5.4: Thinking steps of the Feature Scenarios agent for the Hotel Reservation scenario

Table 5.4 outlines the agent’s internal reasoning process. In Step 1, the agent reviews the
generated scenarios for completeness and identifies potential gaps, such as missing edge
cases or unhandled interactions (e.g., invalid input handling or post-search recommen-
dations). In Step 2, after ensuring all relevant cases are addressed, the agent finalises the
scenario set, indicating that no further additions are necessary. This structured approach
highlights the agent’s iterative refinement process and its capacity to simulate realistic user
journeys that can serve as a basis for creating Locust files.

Project Environment agent execution

This agent created a docker-compose.yml file, together with additional Dockerfiles for
the individual services, namely:

1. services/reservation/Dockerfile

2. services/user/Dockerfile

3. services/recommendation/Dockerfile

4. services/search/Dockerfile

The SUT consists of a microservice-based codebase written in Go. The agent attempted
to infer the necessary build context and create one Dockerfile for each service individu-
ally. However, it incorrectly assumed the presence of Go module files (go.mod and go.sum),
which are typically used for dependency management in Go projects. In reality, the mi-
croservices only contain a single server.go file with the service logic, and lacked the ex-
pected module files. As a result, the generated Docker configurations were invalid and failed
to build the services correctly. This highlighted a limitation in the agent’s inference mecha-
nism and emphasised the importance of accurately detecting the structure and dependen-
cies of the codebase before generating containerization artefacts.

The Project Environment agent itself followed a structured and iterative reasoning pro-
cess to prepare the deployment environment for the system under test, as presented in Ta-
ble 5.5. Initially, it identified the core services, particularly those written in Go, and began
by generating Dockerfiles for these services, ensuring compatibility with ARM architec-
tures, which is the architecture of the MacBook on which the agent was executed. It then
constructed a docker-compose.yml file that integrates these services with essential de-
pendencies such as MongoDB, Memcached, Consul, and Jaeger. As the process unfolds,

CHAPTER 5. EVALUATION 68

the agent incrementally expands its scope to include additional services, such as user man-
agement, recommendation, and search, applying consistent patterns in Dockerfile creation
and service orchestration. Throughout the process, it correctly stored key artefacts and con-
figuration details in the provided long-term memory, including the base endpoint of the ap-
plication. In later steps, the agent performs validation and refinement, reviewing environ-
ment variables, volumes, and network settings to ensure correctness. It also incorporates
enhancements such as copying proto files and generating gRPC code where necessary.

However, since the generated Docker configuration did not work, the already provided
Docker configuration from the DeathStarBench was manually inserted into the codebase
to permit the remaining agents to be executed, rather than initialising the Go package man-
ager for every microservice to make it work with the generated Docker configuration.

Selecting a goal

To enable the following agents to create a performance test that targets a specific goal based
on the analysis performed so far, the tester must now select this goal. The available options
are:

• Load Testing

• Stress Testing

• Scalability Testing

• Endurance Testing

• Spike Testing

• Volume Testing

• Concurrency Testing

For the following agents, Load Testing was selected as a goal. However, it is always pos-
sible to add more tests with different goals at a later stage.

Performance Test agent execution

In this step, the goal is to generate an executable Locust file that leverages the REST
endpoints exposed by the SUT to carry out the performance test on them. The generated
Locust file is shown in Appendix B.2. It becomes evident that the agent took the previ-
ously generated scenarios into account and extracted the correct endpoints from the code-
base.

The agent’s reasoning process for constructing a Locust performance test file, shown in
Table 5.6, was methodical and goal-oriented, progressing through distinct phases of valida-
tion, enhancement, and finalisation. Initially, the agent focused on verifying the function-
ality of the /hotels endpoint by executing sample queries, ensuring the endpoint behaved
as expected before integrating it into a performance testing framework. Once validated, the
agent proceeded to enrich the Locust script by configuring user load parameters and defin-
ing test initiation instructions, thereby laying the groundwork for realistic load simulation.
In the final step, the agent incorporated a comprehensive set of user scenarios—including

CHAPTER 5. EVALUATION 69

Step Generated next_step
1 I will create Dockerfiles for the main services in the microservices architecture,

focusing on Go services. Then, I will create a docker-compose.yml file that
includes these services along with dependencies like MongoDB, Memcached,
Consul, and Jaeger. I will ensure ARM compatibility and set the base endpoint
for the project.

2 I will create a Dockerfile string for the reservation service and other main ser-
vices as a single string path, then set it in long term memory. After that, I will
create a docker-compose.yml file string including all services and dependen-
cies like MongoDB, Memcached, Consul, and Jaeger, ensuring ARM compatibil-
ity. Finally, I will set the base endpoint for the project in long term memory.

3 I will create Dockerfiles for other main services such as user, recommendation,
and search services following the same pattern as the reservation service. Then,
I will create a comprehensive docker-compose.yml file that includes all these
services along with MongoDB, Memcached, Consul, and Jaeger services. I will
ensure ARM compatibility and set the base endpoint for the project in long term
memory.

4 I will continue creating Dockerfiles for the recommendation and search services
following the same pattern as the reservation and user services. After that, I will
create a docker-compose.yml file that includes all these services plus MongoDB,
Memcached, Consul, and Jaeger, ensuring ARM compatibility. Finally, I will set
the base endpoint for the project in long term memory.

5 I will review the Dockerfiles and docker-compose.yml file to ensure all neces-
sary services are included and properly configured. I will also verify that envi-
ronment variables, volumes, and network settings are correctly set for the mi-
croservices and dependencies. If everything is correct, I will finalize the setup
and mark the task as done.

6 I will update the Dockerfiles to include copying proto files and generating
gRPC code if necessary, and ensure environment variables for MongoDB, Mem-
cached, and Consul are passed in the docker-compose.yml. I will also verify
volumes and network settings. Then, I will finalize the Dockerfiles and docker-
compose.yml for the microservices and dependencies.

Table 5.5: Thinking steps of the Project Environment agent for the Hotel Reservation sce-
nario

CHAPTER 5. EVALUATION 70

Step Generated next_step
1 I will test the /hotels endpoint with sample query parameters to verify it works

as expected before finalizing the locust performance test script.
2 I will enhance the locust performance test by adding user load configuration

and test start instructions. Then I will finalize and save the locust file for the
hotel search feature load testing.

3 I have updated the locust file with detailed user scenarios for hotel search under
load, including filters, no filters, no availability, and flexible dates. The locust
file is ready for execution. The next step is to consider the test execution and
monitoring phase to validate performance under load.

Table 5.6: Thinking steps of the Performance Test agent for the Hotel Reservation scenario

searches with filters, without filters, with no availability, and with flexible dates—into the
Locust file. This ensured that the performance test would reflect diverse usage patterns as
generated by the Feature Scenarios agent.

PPTAM Wrapper agent execution

Figure 5.4 shows the generated PPTAM test steps required for executing the performance
test. It reveals that the agent successfully took into account the goal of the performance
test, namely Load Testing, and constructed the test steps accordingly.

Regarding the thinking process shown in Table 5.7, the agent first enhances the perfor-
mance test by introducing additional load steps with gradually increasing user loads. This
decision demonstrates an understanding of the primary objective of load testing, which is
to evaluate system behaviour under stress and identify potential performance bottlenecks.

In the second step, the agent retrieves the current summary of the PPTAM test plan to
ensure that the planned test scenarios align with the intended testing goals. This reflective
step enables the agent to verify the completeness of the test plan before proceeding.

Finally, in the third step, the agent concludes the planning phase, recognising that the
test plan now includes sufficient load variations to effectively assess the hotel search fea-
ture’s performance under different traffic conditions. This sequence highlights the agent’s
ability to refine and validate its strategy iteratively, ensuring alignment with the overall test-
ing objective.

The generated PPTAM configuration seen in Figure 5.4 accurately describes the goal of
a Load Test.

Setting the operational profile

The tool enables performance testers to create an operational profile of the SUT in plain text,
highlighting special cases and the average load on the system. For this test, the following
sample operational profile was provided:

I have on average around 300 daily users, however, on some days that number can climb
up to 1000.

Note that the operational profile is not important for the execution of the last agent.
Moreover, it is necessary to determine how the agent embeds the operational profile within
the report and how it links the raw test results to that operational profile.

CHAPTER 5. EVALUATION 71

Step Generated next_step
1 Add additional load steps with increasing user load to simulate higher traffic

and observe system behavior under stress. This will help identify performance
bottlenecks and system limits for the hotel search feature.

2 Retrieve and provide the current PPTAM test plan summary to review the
planned load tests for the hotel search feature before concluding the perfor-
mance test planning.

3 The current PPTAM test plan includes three load steps with increasing user
loads to simulate different traffic levels for the hotel search feature. I will now
conclude the performance test planning as the test plan sufficiently covers load
testing scenarios to evaluate response times and system behavior under varying
user loads.

Table 5.7: Thinking steps of the PPTAM Wrapper agent for the Hotel Reservation scenario

Figure 5.4: Results of the PPTAM Wrapper agent for the Hotel Reservation scenario

CHAPTER 5. EVALUATION 72

Step Generated next_step
1 I will start with planning the structure of the report and gathering the necessary

information from the knowledge shelf.
2 Review the report sections for clarity, completeness, and alignment with the

project goals and performance test objectives. Ensure that all findings are
clearly linked to the operational profile and that recommendations are action-
able. If any gaps or ambiguities are found, update the relevant sections for im-
proved precision and readability. If the report is already comprehensive and
clear, finalize it and mark the process as complete.

3 The report sections are clear, comprehensive, and directly address the opera-
tional profile, test results, and performance requirements for the Hotel Search
feature. All findings and recommendations are well-aligned with the project
goals and performance test objectives. As the report is already complete and
no further gaps or ambiguities are identified, the next step is to finalize the re-
port and mark the process as done.

Table 5.8: Thinking steps of the Result Interpreter agent for the Hotel Reservation scenario

Result Interpreter agent execution

The agent was tasked with interpreting the raw performing test results and putting them
into perspective with the predefined operational profile. As shown in Table 5.8, its opera-
tion begins by ingesting the raw data from performance tests and aligning it with the ex-
pected usage patterns defined in the operational profile. The agent then analyses key per-
formance indicators—such as response times, throughput, and error rates—across various
test scenarios. It puts these metrics into context by comparing them against the operational
expectations, identifying whether the system meets, exceeds, or falls short of the required
performance levels. Finally, it summarises the findings into a report, complete with inter-
pretations, comparisons, and actionable recommendations.

The final report, presented in Appendix B.3, illustrates strong technical clarity and metho-
dological integrity, organised around the operational profile, which is essential for mean-
ingful interpretation of performance metrics. Key indicators, including the median, 90th
percentile, and maximum response times, are present. Moreover, the report provides in-
depth insights beyond raw data and recommends actions for the performance tester, such
as conducting regular performance evaluations and stress testing at higher loads.

5.4.2 Social Network

The outcomes of all agent executions will be presented and analysed regarding their han-
dling of the injected faults and the SUT as a whole, similar to the Hotel Reservation scenario.
Furthermore, similarities and differences between the agent executions of both SUTs will be
examined.

Project Purpose agent execution

In executing the Project Purpose agent on the Social Network application, the agent fol-
lows a comprehensible reasoning process to derive a description of the SUT, as outlined in
Table 5.9. It begins by analysing the README.md file to establish a foundational under-

CHAPTER 5. EVALUATION 73

standing of the project’s goals and scope. It then explores the src directory to identify the
core microservices and their roles within the system. A key step in this process is examining
the social_network.thrift file, which defines the service interfaces and interactions between
components. This file offers crucial insights into the system’s architecture and how its ser-
vices interact. Based on this exploration, the agent synthesises a high-level description that
captures the system’s purpose, emphasising its microservices-based architecture, support
for user interactions, content sharing, and scalability for large-scale social networking sce-
narios.

The following result was produced:

This project is a microservices-based social network platform designed to fa-
cilitate user registration, social connections through unidirectional follow rela-
tionships, and content sharing via posts. It provides a realistic social networking
experience where users can compose posts, mention other users, share media,
and view personalized timelines including home and user timelines. The ar-
chitecture emphasizes scalability, modularity, and efficient inter-service com-
munication using RPC, making it suitable for handling large social graphs and
high request volumes. The system is valuable for enabling social interaction and
content dissemination in a distributed environment and serves as a benchmark
or research tool for microservices-based social network implementations.

When comparing this execution to the one performed on the Hotel Reservation applica-
tion, several similarities emerge. In both cases, the agent begins with high-level documen-
tation to establish context, then drills down into the codebase to examine service-specific
files or definitions. The agent’s reasoning is iterative and hierarchical, moving from general
to specific, and it concludes by refining its understanding through revisiting documentation
or interface definitions.

However, there are also notable differences. The hotel reservation scenario involves a
deeper traversal of the codebase, including multiple service directories and specific im-
plementation files, such as server.go, which reflects a more granular inspection of service
logic. In contrast, the social network scenario relies more heavily on the .thrift interface
definitions and a smaller number of reasoning steps, suggesting that the architectural and
functional insights were more centralised and accessible through fewer files. This differ-
ence may stem from the way the two applications are structured: the hotel reservation sys-
tem distributes logic across multiple services with distinct responsibilities. In contrast, the
social network application encapsulates much of its service interaction logic in the .thrift
definitions.

Overall, both executions demonstrate the agent’s ability to adapt its exploration strategy
based on the structure and documentation of the target system.

Project Insights agent execution

The agent’s thinking steps, presented in Table 5.10, display a consistent and logical progres-
sion. In both scenarios, the agent begins by examining core directories and configuration
files that are likely to reveal the primary languages, frameworks, and supporting technolo-
gies. For the hotel reservation application, the agent begins with the go.mod file and quickly
identifies the essential backend technologies. Then, it checks for orchestration and con-
tainerization tools by examining specific directories. The process is similar in the social net-
work application: the agent first explores the frontend directory, then inspects deployment-

CHAPTER 5. EVALUATION 74

Step Generated next_step
1 Read the README.md file to gather detailed information about the project’s

goals, scope, and intended user value.
2 Explore the src directory to identify key components and services implemented

in the project to better understand the architecture and user value.
3 Review the README.md and explore the social_network.thrift file to under-

stand the service definitions and interactions between microservices, which will
clarify the system’s capabilities and user value.

4 Summarize the purpose based on the detailed service definitions and README,
and finalize the project purpose description as the information is comprehen-
sive.

Table 5.9: Thinking steps of the Project Purpose agent for the Social Network scenario

related directories, and finally delves into configuration files to uncover further details about
the tech stack.

After compiling a comprehensive list of technologies, the agent transitions to analysing
authentication mechanisms as defined by its architecture. It initiates this stage by searching
for evidence of login or credential-management functionality, such as service proto files or
configuration schemas. In both workflows, the agent methodically checks additional ser-
vice directories and middleware to ensure no authentication or authorisation method is
overlooked.

The results of this agent execution, shown in Figure 5.5, were double-checked with the
codebase. All generated entries are valid for both the tech stack and the authentication
mechanisms.

Project Features agent execution

Similar to the execution of this agent for the hotel reservation project, no next_step mes-
sages were logged in this case either.

However, a thorough investigation of the codebase must have been executed, as the
agent would otherwise not be able to describe the identified features presented in Figure
5.6.

Since all technical details were removed from the README as part of the fault-injection
step, the agent’s output can now be assessed in terms of its quality using the original README
file as a comparison. In the original README file, the following features were listed:

• Create text post (optional media: image, video, shortened URL, user tag)

• Read post

• Read entire user timeline

• Receive recommendations on which users to follow

• Search database for user or post

• Register/Login using user credentials

• Follow/Unfollow user

CHAPTER 5. EVALUATION 75

Step Generated next_step
1 I will start with checking the codebase for the tech stack.
2 Explore the media-frontend directory to identify frontend technologies used in

the project.
3 Review the helm-chart directory to check for Kubernetes or Helm usage for de-

ployment orchestration.
4 Check the config directory for configuration files that might indicate use of other

technologies or frameworks such as databases, message brokers, or monitoring
tools.

5 Add Jaeger to the tech stack for distributed tracing and monitoring based on the
presence of jaeger-config.yml in the config directory. Then, check the content
of service-config.json for any other technologies or services used.

6 The tech stack has been updated with Docker, Docker Compose, Python
3.5+, Lua, Nginx, Thrift RPC, C++, Redis, MongoDB, Memcached, OpenResty,
mcrouter, Helm, and Jaeger. Next, I plan to check the helm-chart/socialnetwork
directory for Helm chart files to confirm Kubernetes usage and possibly identify
other technologies or configurations.

7 I will start with checking if the project has any authentication mechanisms.
8 The authentication mechanisms and schema have been updated to reflect user-

name and password authentication with salted and hashed passwords stored in
MongoDB, JWT token generation upon login, and token-based authentication
using an X-Token header for subsequent requests. No further steps planned as
the authentication mechanisms appear fully described.

Table 5.10: Thinking steps of the Project Insights agent for the Social Network scenario

CHAPTER 5. EVALUATION 76

Figure 5.5: Results of the Project Insights agent for the Social Network scenario

CHAPTER 5. EVALUATION 77

Figure 5.6: Results of the Project Features agent for the Social Network scenario

Taking into account the agent’s results, the following features were not identified at all:

• Read entire user timeline

• Receive recommendations on which users to follow

• Search database for user or post

Note that the Read post feature is indirectly explained in the description of the Follow System
feature, stating it allows to receive updates from those they follow.

Selecting a feature

Similar to the hotel reservation scenario, a specific feature for detailed analysis must be se-
lected. For the sake of the remaining agent executions, the Post Creation and Sharing has
been chosen.

Feature Difficulties agent execution

For this agent execution, the information revealed by the next_step messages, as depicted
in Table 5.11, is sparse, similar to the execution with the hotel reservation project.

However, one possible difficulty was identified as shown in Figure 5.7. It addresses the
microservice architecture, which may serve as a bottleneck when creating a post or utilising
the sharing feature.

CHAPTER 5. EVALUATION 78

Step Generated next_step
1 I have added the main difficulty related to scalability and performance issues

in the post creation and sharing feature due to multiple RPC calls and media
handling under high load. Since this covers the critical aspects of the feature’s
performance challenges, I plan no further steps.

Table 5.11: Thinking steps of the Feature Difficulties agent for the Social Network scenario

Figure 5.7: Results of the Feature Difficulties agent for the Social Network scenario

CHAPTER 5. EVALUATION 79

Step Generated next_step
1 Review existing scenarios for completeness and consistency, then finalize the

scenario set for the ’Post Creation and Sharing’ feature.

Table 5.12: Thinking steps of the Feature Scenarios agent for the Social Network scenario

Step Generated next_step
1 I will create a Dockerfile as a string (not a list) and set it in the long term memory.

Then I will create a docker-compose.yml file that includes services for the social
network app, MongoDB, Redis, Memcached, Jaeger, and Nginx, based on the
project description and README instructions. I will also set the base endpoint
to http://localhost:8080 as indicated in the README.

2 I have created a Dockerfile that installs necessary dependencies and runs the
social network app, and a docker-compose.yml file that defines services for the
app, MongoDB, Redis, Memcached, Jaeger, and Nginx with proper port map-
pings and volumes. The base endpoint is set to http://localhost:8080. The
next step is to consider if any environment variables or additional configura-
tion files need to be added to the docker-compose or Dockerfile, but based on
the README and config files, the current setup should be sufficient to start the
project in a Docker environment on Apple Silicon. Therefore, I consider this
task done.

Table 5.13: Thinking steps of the Project Environment agent for the Social Network scenario

Feature Scenarios agent execution

The result of this agent can be seen in Appendix B.4. Similar to the execution with the hotel
reservation SUT, this agent also suggests scenarios that test edge cases to uncover hidden
performance issues while ensuring that the entire functionality of the feature under test is
represented within the generated scenarios, as shown in Table 5.12. Overall, the execution
of the agent in this project is highly similar to that of the hotel reservation feature.

Project Environment agent execution

In contrast to the docker-compose.yml and Dockerfile created for the first scenario, the
Docker configuration generated for this scenario was at least syntactically valid. However,
the service nginx was not configured at all, meaning no configuration file was provided,
hence it did not start. Although the agent considered adding additional configuration, as
shown in Table 5.13, it ultimately decided against it after reviewing the README and other
configuration files. As a result, the leading service of this project, social network app,
also did not start as it depends on nginx. Therefore, this agent has failed its task of con-
tainerising the SUT.

Similar to the first scenario, the original Docker files were restored in the codebase to
enable testing the remaining agents.

CHAPTER 5. EVALUATION 80

Step Generated next_step
1 I will verify the correctness of the login and post creation endpoints by calling

them with test data to ensure they work as expected before finalizing the locust
performance test script.

2 I will finalize the locust file with the current implementation for load testing the
post creation feature, including user login and different post creation scenarios.
Then I will mark the task as done.

Table 5.14: Thinking steps of the Performance Test agent for the Social Network scenario

Step Generated next_step
1 Add a higher load test step to simulate increased user traffic for post creation

and sharing to observe system behavior under stress.
2 The PPTAM test plan for load testing post creation and sharing feature is com-

plete with three load levels. No further steps are planned.

Table 5.15: Thinking steps of the PPTAM Wrapper agent for the Social Network scenario

Selecting a goal

As the fundamental analysis phase of the SUT is now complete, the performance tester must
determine a goal for the performance test, as already seen during the execution of the ho-
tel reservation scenario. To keep the factors the same for both scenarios, which increases
comparability between them, Load Testing was again chosen as the performance test goal.

Performance Test agent execution

The generated Locust file can be found in Appendix B.5. It can be observed that the agent
successfully understood the authentication mechanisms of this project by logging in as the
predefined test user first. The generated steps within the Locust file mimic the previously
generated scenarios, likewise observed when executing this agent for scenario 1. The agent
performed exactly as intended.

PPTAM Wrapper agent execution

Table 5.15 shows how the agent constructed the PPTAM configuration, revealing it chose a
step-by-step approach to append one step at a time to the final configuration. The result
presented in Figure 5.8 reveals a very similar configuration to the one created for scenario 1.
However, this configuration aims to increase the load on the SUT much quicker.

Setting the operational profile

The operational profile was copied from the Hotel Reservation scenario to limit varying fac-
tors between both scenario executions. Namely: I have on average around 300 daily users,
however, on some days that number can climb up to 1000.

CHAPTER 5. EVALUATION 81

Figure 5.8: Results of the PPTAM Wrapper agent for the Social Network scenario

CHAPTER 5. EVALUATION 82

Step Generated next_step
1 I will start with planning the structure of the report and gathering the necessary

information from the knowledge shelf.
2 Review the report for clarity, completeness, and alignment with the project goals

and performance test objectives. Ensure that all findings are clearly linked to
the operational profile and that recommendations are actionable. If any gaps or
ambiguities are found, update the relevant sections for improved precision and
completeness.

3 The report has been reviewed for logical flow, completeness, and clarity. All sec-
tions are well-aligned, and the findings and recommendations are clearly linked
to the operational profile and test results. No further refinements are necessary
unless new data or requirements emerge. The next step is to mark the report as
complete.

Table 5.16: Thinking steps of the PPTAM Wrapper agent for the Social Network scenario

Result Interpreter agent execution

The final report for this scenario can be found in Appendix B.6. It follows the same structure
as outlined in scenario 1, providing readers with a clear and comprehensible overview of
the performance test, while ensuring the text remains concise and easy to read. Addition-
ally, recommendations are provided, similar to those in the report from scenario 1. Further-
more, the thinking steps presented in Table 5.16 largely overlap with those from the previous
scenario.

Chapter 6

Discussion

This chapter discusses the results obtained in the evaluation and the threats of validity.

6.1 Evaluation interpretation

This section provides a critical analysis of the evaluation results obtained from executing the
developed tool on two real-world microservice-based applications. The goal is to assess how
effectively the agentic AI system performed in generating, implementing, and interpreting
performance tests. Each scenario is examined individually to highlight the strengths and
limitations of the tool in different contexts, followed by a synthesis of the overall findings.

6.1.1 Interpretation of the Hotel Reservation scenario

The evaluation of the Hotel Reservation scenario demonstrated the tool’s strong capability
to autonomously generate and execute a complete performance test with minimal human
intervention. The agents successfully navigated the codebase, extracted relevant features,
and constructed realistic user scenarios that reflected diverse usage patterns. Notably, the
Feature Scenarios agent produced a well-rounded set of test cases, including edge cases such
as searches with no availability or flexible dates, which contributed to a comprehensive per-
formance evaluation.

Despite the deliberate injection of misleading information, such as a fabricated feature
in the README and a decoy service folder, the agents showed a mixed ability to validate and
cross-reference data. For instance, the Project Purpose agent incorporated the non-existent
chat functionality into its system description, indicating a reliance on documentation with-
out sufficient verification against the actual codebase. This highlights a current limitation
in the agents’ reasoning depth, particularly in distinguishing between declared and imple-
mented features.

The Dockerization process, handled by the Project Environment agent, revealed another
area for improvement. The agent assumed the presence of Go module files, which were ab-
sent, resulting in invalid Docker configurations. This misstep underscores the need for more
robust detection mechanisms when inferring build requirements from unconventional or
minimalistic code structures.

On the positive side, the Performance Test agent generated a valid and executable Lo-
cust file that accurately reflected the previously defined user scenarios. The test execution,

83

CHAPTER 6. DISCUSSION 84

facilitated by the PPTAM Wrapper agent, was well-aligned with the selected goal of load test-
ing. The Result Interpreter agent then produced a detailed and insightful report, effectively
contextualising the raw performance metrics against the operational profile. The report
confirmed that the system exceeded performance expectations, with low response times,
zero failures, and throughput well above the required threshold.

Overall, the Hotel Reservation scenario validated the tool’s end-to-end functionality and
highlighted its potential for real-world application. While the agents demonstrated im-
pressive autonomy and contextual understanding, the evaluation also revealed areas where
deeper validation and improved inference could enhance reliability and robustness.

6.1.2 Interpretation of the Social Network scenario

The evaluation of the Social Network scenario further validated the tool’s ability to auto-
nomously generate and execute performance tests in a complex, microservice-based envi-
ronment. Compared to the Hotel Reservation scenario, this application presented a broader
and more interconnected service architecture, offering a valuable opportunity to assess the
tool’s scalability and adaptability.

The agents demonstrated a high degree of autonomy and contextual awareness, partic-
ularly in navigating the codebase and identifying relevant features. Despite the deliberate
removal of key documentation, as part of the fault injection, the agents were still able to
extract meaningful insights from the source code alone. This was evident in the Project Pur-
pose and Project Insights agents, which successfully reconstructed the system’s purpose and
technical stack, including nuanced authentication mechanisms such as JWT-based token
handling.

However, the Project Features agent showed some limitations in completeness. While
it correctly identified core features like post creation and user registration, it failed to detect
others, such as timeline viewing and user recommendations features that were originally
documented but removed for the evaluation. This suggests that while the agent can infer
functionality from implementation details, it still benefits significantly from supplementary
documentation when available.

The Project Environment agent again struggled with Dockerization, similar to the first
scenario. Although the generated configuration was syntactically valid, it lacked critical
components, mainly the Nginx configuration, resulting in a non-functional deployment.

On the other hand, the Performance Test agent performed exceptionally well. It cor-
rectly incorporated authentication flows and generated a Locust file that reflected realistic
user interactions, including media uploads and user mentions. The PPTAM Wrapper agent
constructed a suitable load test plan, and the Result Interpreter agent produced a compre-
hensive report that presented the results against the operational profile.

In comparison to the Hotel Reservation scenario, the Social Network scenario high-
lighted the tool’s ability to scale to more complex systems while maintaining effectiveness.
However, it also exposed a greater reliance on documentation for feature discovery and a
continued need for improvement in environment setup automation.

6.1.3 Overall tool effectiveness

The evaluation of the developed tool across two distinct microservice-based applications,
namely Hotel Reservation and Social Network, demonstrated its strong potential for au-
tomating performance testing through agentic AI. In both scenarios, the tool was able to

CHAPTER 6. DISCUSSION 85

autonomously generate, execute, and interpret performance tests with minimal human in-
tervention, validating its core design goals. To summarise both scenarios, a list of strengths
and weaknesses was created:

Strengths:

1. End-to-End Automation: The tool successfully automated the entire performance test-
ing lifecycle, from scenario generation to result interpretation, without requiring man-
ual scripting or configuration.

2. Contextual Understanding: Even when limited to static code analysis via solely lever-
aging the Codebase Explorer MCP Server, the agents were able to extract meaningful
insights about the system under test, including architecture, features, and authenti-
cation mechanisms.

3. Robust Scenario Generation: The Feature Scenarios agent consistently produced di-
verse and realistic user flows, including edge cases, which enhanced the quality of the
generated performance tests.

4. Accurate Test Execution and Analysis: The Performance Test and PPTAM Wrapper agents
generated valid Locust files and test plans aligned with the selected testing goals. The
Result Interpreter agent provided clear, actionable reports that put the raw metrics
into perspective in relation to the predefined operational profiles.

Weaknesses:

1. Validation of Documentation: In both scenarios, agents occasionally relied too heavily
on documentation without verifying its accuracy against the actual codebase. This led
to the inclusion of non-existent features in the system description. This is a common
problem in the industry, as not every company continuously maintains their docu-
mentation of their projects.

2. Dockerization Challenges: The Project Environment agent struggled to generate valid
Docker configurations, particularly when expected files, e.g., go.mod, were missing or
when services required additional setup, e.g., Nginx.

3. Feature Detection Completeness: While the agents identified core features effectively,
some secondary or less explicitly defined features were missed, especially when doc-
umentation was sparse or removed.

6.2 Threats to Validity

To ensure a critical and transparent evaluation of the presented work, this section discusses
potential threats to the validity of the results. These are categorised into four commonly
accepted dimensions: internal, external, construct, and conclusion validity.

1. Internal validity: Internal validity focuses on whether the observed results can be re-
liably linked to the developed tool and its agentic AI architecture, rather than being
influenced by external or uncontrolled factors. In this thesis, various steps were taken
to isolate the tool’s effects, including conducting experiments in a controlled envi-
ronment. Nevertheless, some uncontrolled variables might still have impacted the
findings:

CHAPTER 6. DISCUSSION 86

• LLM non-determinism: The underlying language models GPT-4.1 and GPT-4.1-
mini show stochastic behaviour, meaning that repeated executions of the same
agent may yield slightly different outputs. This introduces variability that is dif-
ficult to fully control.

2. External Validity External validity refers to the extent to which the study’s findings are
applicable to contexts beyond the specific test cases examined. Although the evalua-
tion focused on two real-world, microservice-based applications from the DeathStar-
Bench suite, the results may not be representative of all kinds of software systems.

• Domain specificity: The tool was tested only on web-based, microservice archi-
tectures. Its effectiveness on monolithic systems was not evaluated within this
thesis.

• Tool configuration: The evaluation relied solely on the Codebase Explorer MCP
Server. In real-world scenarios, additional context sources (e.g., Jira, GitHub,
Swagger) may be available and will most likely significantly influence the tool’s
performance and output quality.

3. Construct Validity Construct validity examines whether the evaluation accurately mea-
sures its intended objectives. In this thesis, the focus was on assessing the feasibility
and effectiveness of using agentic AI for automating performance testing. Although
the assessment concentrated on generated artefacts, there are still some limitations
to consider:

• Proxy metrics: The quality of generated Locust files and Docker configurations
was used as a proxy for agent effectiveness. However, these artefacts may not
fully capture the agents’ reasoning capabilities or robustness.

• Limited user feedback: The evaluation did not include usability studies or feed-
back from real developers, which could have provided additional insights into
the practical utility of the tool.

4. Conclusion Validity Conclusion validity refers to the robustness of the inferences made
from the data. Although the findings indicate that the tool can independently create
and perform performance tests, various factors may influence the dependability of
these conclusions. Some exmples are:

• Sample size: Only two systems were evaluated, which limits the statistical power
of the findings.

• Single-run evaluations: Each agent was executed once per scenario. Repeated
runs could have revealed variability in outputs or uncovered edge cases.

Despite these limitations, the evaluation provides a strong initial indication of the tool’s
capabilities and highlights promising directions for future refinement and broader valida-
tion.

Chapter 7

Conclusion and Further Studies

This thesis explored the feasibility and effectiveness of using agentic AI to automate the end-
to-end process of software performance testing. By leveraging LLMs, LangGraph agents,
and a modular architecture built around MCP servers and the PPTAM framework, a com-
prehensive desktop application was developed to autonomously generate, execute, and in-
terpret performance tests with minimal human intervention.

The tool was evaluated on two real-world microservice-based applications from the
DeathStarBench suite. The results demonstrated that the system could successfully extract
meaningful insights from the codebase, generate realistic performance test scenarios, exe-
cute them using a dynamic test runner, and produce actionable reports. Even when relying
solely on static code analysis, the agents demonstrated strong contextual understanding
and autonomy. The modular architecture, based on LangGraph and MCP servers, proved to
be adaptable to different system architectures.

However, the evaluation also revealed several limitations. The Project Environment agent
struggled with Dockerization in the absence of standard configuration files, and some agents
occasionally relied too heavily on documentation without verifying its accuracy against the
codebase. These findings highlight areas for future improvement.

Suggestions for Further Studies

To build upon the foundation laid by this thesis, the following directions are recommended
for future research and development:

1. Enhance the Project Environment Agent with Execution Tools
Currently, the Project Environment agent generates Dockerfiles based on static analy-
sis. By integrating execution tools, the agent could test the Dockerfiles it creates and
inspect console output during container startup. This feedback loop would allow the
agent to refine its configurations, significantly improving accuracy and robustness it-
eratively.

2. Introduce a Dedicated Orchestration Agent
The current system uses a Tauri-based desktop application to orchestrate agent exe-
cution. A more scalable and modular approach would be to implement a tenth agent
responsible for orchestrating the others using agent-to-agent communication princi-
ples. This would enable fully autonomous workflows and lay a foundation for head-
less or even server-based deployments.

87

CHAPTER 7. CONCLUSION AND FURTHER STUDIES 88

3. Expand Contextual Understanding with Additional MCP Servers
While the tool already supports integration with GitHub, Jira, and Swagger via MCP
servers, future work could explore additional sources such as CI/CD pipelines, run-
time logs, or telemetry data. This would allow agents to reason not only about the
static structure of the system but also about its dynamic behavior in production.

4. Improve Feature Validation and Redundancy Checks
Agents should be enhanced with mechanisms to cross-validate information from mul-
tiple sources. For example, if a feature is mentioned in documentation but not imple-
mented in the codebase, the system should flag it as potentially outdated or incorrect.

5. User-Centric Evaluation and Usability Studies
Future work should include usability testing with real developers to assess the tool’s
practical utility, user experience, and learning curve. Feedback from practitioners
could guide improvements in the UI, agent transparency, and customisation options.

6. Integration with CI/CD Pipelines
To support continuous performance testing, the tool could be extended to run in
CI/CD environments. This would allow for automated regression testing and perfor-
mance monitoring with each code change.

These directions aim to further enhance the autonomy, reliability, and applicability of
agentic AI in software performance testing, thus moving towards more intelligent and adap-
tive testing systems in the future.

Bibliography

[1] Viktoriia Mykytas. The role of artificial intelligence in economic transformation: From
automation to the data economy. Three Seas Economic Journal, 6:66–73, 06 2025.

[2] Chengqing Zong Yang Zhao, Jiajun Zhang. Transformer: A general framework from ma-
chine translation to others | machine intelligence research, 6 2023. [Online; accessed
2025-07-09].

[3] Lawrence Fisher. How ai/llms can help, hinder developers – communications of the
acm, 6 2025. [Online; accessed 2025-07-09].

[4] Glenn Zorpette. Large language model performance raises stakes - ieee spectrum, 7
2025. [Online; accessed 2025-07-09].

[5] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare, Claus
Pahl, Stefan Schulte, and Johannes Wettinger. Performance engineering for microser-
vices: Research challenges and directions. 04 2017.

[6] Tingshuo Miao, Asif Imtiaz Shaafi, and Eunjee Song. Systematic mapping study of test
generation for microservices: Approaches, challenges, and impact on system quality.
Electronics, 14(7), 2025.

[7] Nikitha Medeshetty, Ahmad Nauman Ghazi, Sadi Alawadi, and Fahed Alkhabbas. From
requirements to test cases: An nlp-based approach for high-performance ecu test case
automation, 05 2025.

[8] Waleed Abdeen, Xingru Chen, and Michael Unterkalmsteiner. An approach for per-
formance requirements verification and test environments generation. Requirements
Engineering, 28(1):117–144, 2023.

[9] Shravan Pargaonkar. A comprehensive review of performance testing methodologies
and best practices: Software quality engineering. International Journal of Science and
Research (IJSR), 12:2008–2014, 11 2023.

[10] Soren Lauesen. Software Requirements: Styles and Techniques. Addison Wesley, 2002.

[11] Mike Cohn. Advantages of the “as a user, i want” user story template., April 2008, ac-
cessed October 31, 2020. https://www.mountaingoatsoftware.com/blog/advantag
es-of-the-as-a-user-i-want-user-story-template.

[12] Scott O. Bradner. Key words for use in RFCs to Indicate Requirement Levels. RFC 2119,
March 1997.

89

https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template
https://www.mountaingoatsoftware.com/blog/advantages-of-the-as-a-user-i-want-user-story-template

BIBLIOGRAPHY 90

[13] Alberto Avritzer, Ricardo Britto, Catia Trubiani, Matteo Camilli, Andrea Janes, Barbara
Russo, André van Hoorn, Robert Heinrich, Martina Rapp, Jörg Henß, and Ram Kishan
Chalawadi. Scalability testing automation using multivariate characterization and de-
tection of software performance antipatterns. J. Syst. Softw., 193:111446, 2022.

[14] Rizwan Bahrawar Khan. Comparative study of performance testing tools: apache jme-
ter and hp loadrunner, 2016.

[15] Anna Trudova, Michal Dolezel, and Alena Buchalcevova. Artificial intelligence in soft-
ware test automation: A systematic literature review. pages 181–192, 01 2020.

[16] Dhaya Sindhu Battina. Artificial intelligence in software test automation: A systematic
literature review. SSRN Electronic Journal, 6:1329–1332, 12 2019.

[17] Mahshid Helali Moghadam. Machine learning-assisted performance testing. 08 2019.

[18] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Systematic map-
ping studies in software engineering. Proceedings of the 12th International Conference
on Evaluation and Assessment in Software Engineering, 17, 06 2008.

[19] Introduction - model context protocol. [Online; accessed 2025-07-07].

[20] Jorge Contreras. Understanding mcp servers: The model context protocol explained -
dev community, 5 2025. [Online; accessed 2025-07-07].

Appendix A

Search query for the mapping study

TITLE-ABS-KEY ("performance testing" OR "load testing" OR "stress testing"
OR "scalability testing" OR "throughput testing" OR "latency testing")
AND
TITLE-ABS-KEY ("artificial intelligence" OR "AI" OR "machine learning"
OR "deep learning" OR "agent*" OR "LLM" OR "large language model*"
OR "language model*")
AND
TITLE-ABS-KEY ("software" OR "software system*" OR "software engineering"
OR "application*" OR "microservice*" OR "web service*")
AND
PUBYEAR > 2018
AND
(LIMIT-TO (DOCTYPE, "cp") OR LIMIT-TO (DOCTYPE, "ar"))

91

Appendix B

Textual results returned from agent
executions

B.1 Generated scenarios for the Hotel Reservation scenario

• Alice (Basic Hotel Search with Date and Filters)

1. Alice opens the hotel reservation system’s search page.

2. She inputs her desired check-in and check-out dates using the flexible date se-
lection tool.

3. She applies filters for price range, minimum hotel rating, and preferred location.

4. Alice submits the search query.

5. The system returns a list of hotels available during the specified dates that match
her filters.

6. Alice browses through the results to find suitable accommodation options.

7. Alice selects a hotel from the list to view detailed information including ameni-
ties, reviews, and cancellation policies.

8. Alice decides to proceed with booking or return to search results to continue
browsing.

• Carol (Hotel Search with Multiple Filters and Sorting)

1. Carol accesses the hotel reservation system’s search interface.

2. She selects her check-in and check-out dates.

3. Carol applies multiple filters including price range, hotel rating, and location.

4. She also chooses to sort the results by rating or price.

5. Carol submits the search.

6. The system returns a sorted list of hotels matching her criteria.

7. Carol reviews the sorted list to select the best option.

• Bob (Hotel Search with No Filters)

1. Bob opens the hotel reservation system’s search page.

92

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 93

2. He inputs his desired check-in and check-out dates.

3. Bob does not apply any filters.

4. He submits the search query.

5. The system returns all hotels available during the specified dates.

6. Bob reviews the list to decide on a hotel.

7. Bob selects a hotel to view detailed information and decides whether to book or
continue searching.

• David (Hotel Search with No Available Hotels)

1. Bob opens the hotel reservation system’s search page.

2. He inputs his desired check-in and check-out dates.

3. Bob does not apply any filters.

4. He submits the search query.

5. The system returns all hotels available during the specified dates.

6. Bob reviews the list to decide on a hotel.

7. Bob selects a hotel to view detailed information and decides whether to book or
continue searching.

• Eve (Hotel Search with Partial Date Flexibility)

1. Eve opens the hotel reservation system’s search page.

2. She inputs tentative check-in and check-out dates but selects an option for flex-
ible date ranges.

3. She applies filters for price and location.

4. Eve submits the search query.

5. The system returns hotels available within the flexible date range and matching
her filters.

6. Eve reviews the options and selects a hotel that fits her flexible schedule.

B.2 Generated locust file for the Hotel Reservation scenario

from locust import HttpUser, task, between
import random

class HotelSearchUser(HttpUser):
wait_time = between(1, 3)

@task(3)
def search_with_filters(self):

Simulate Alice and Carol’s search with filters and sorting
params = {

"inDate": "2025-08-01",
"outDate": "2025-08-05",

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 94

"lat": 40.7128,
"lon": -74.0060,
"price_min": 50,
"price_max": 300,
"min_rating": 3,
"location": "downtown",
"sort": random.choice(["rate", "price"])

}
self.client.get("/hotels", params=params)

@task(1)
def search_no_filters(self):

Simulate Bob’s search with no filters
params = {

"inDate": "2025-08-01",
"outDate": "2025-08-05",
"lat": 40.7128,
"lon": -74.0060

}
self.client.get("/hotels", params=params)

@task(1)
def search_no_availability(self):

Simulate David’s search with no available hotels
params = {

"inDate": "2025-12-25",
"outDate": "2025-12-30",
"lat": 35.0000,
"lon": -120.0000,
"price_min": 100,
"price_max": 200,
"min_rating": 4,
"location": "remote"

}
self.client.get("/hotels", params=params)

@task(1)
def search_flexible_dates(self):

Simulate Eve’s search with flexible dates
params = {

"inDate": "2025-08-01",
"outDate": "2025-08-10",
"lat": 40.7128,
"lon": -74.0060,
"flexible_dates": True,
"price_min": 50,
"price_max": 250,

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 95

"location": "suburbs"
}
self.client.get("/hotels", params=params)

To run this test, use the command:
locust -f locustfile.py --host=http://localhost:5000
Then open http://localhost:8089 in your browser to start the load test

B.3 Generated report for the Hotel Reservation scenario

1. Performance Test Interpretation: Hotel Search Feature

• This section provides a detailed interpretation of the performance test results for
the Hotel Search feature of the Hotel Reservation system, referencing the opera-
tional profile to establish the requirements the system must withstand.

Operational Profile:
The system is expected to handle an average of 300 daily users, with peak loads
reaching up to 1000 users on certain days. This sets the baseline for the expected
concurrency and throughput that the Hotel Search feature must support without
degradation in user experience.

Performance Test Results Summary:

– The performance test simulated various search scenarios, including flexible
date selection and multiple filtering criteria (price, rating, location, sorting).

– Across all tested endpoints, the system demonstrated:

* Median response times between 7ms and 8ms.

* 90th percentile response times between 11ms and 12ms.

* Maximum response times ranging from 15ms to 26ms.

* Zero failures recorded across all test scenarios, indicating high reliabil-
ity under the tested load.

* Request rates per endpoint ranged from 0.22 to 0.39 requests/second,
with an aggregated rate of 1.5 requests/second.

Interpretation:

– The Hotel Search feature consistently delivered low-latency responses, with
the vast majority of requests completing in under 12ms (90th percentile)
and no observed errors or failures.

– The maximum response times, while higher, remained well below thresh-
olds that would impact user experience for interactive search operations.

– The tested request rates are below the peak operational profile (1000 daily
users = 0.7 requests/second if evenly distributed), suggesting the system can
comfortably handle expected and peak loads.

– No performance bottlenecks or instability were observed during the test, in-
dicating the feature is robust and scalable for current operational demands.

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 96

Next, a comparison will be made between the tested throughput and the oper-
ational profile’s peak requirements to ensure the system’s headroom for future
growth or unexpected spikes.

2. Comparison with Operational Profile and Recommendations

• Comparison with Operational Profile:

– The operational profile indicates a peak of up to 1000 daily users, which
translates to approximately 0.7 requests per second if distributed evenly
over 24 hours. The aggregated test throughput was 1.5 requests per second,
more than double the peak operational requirement.

– All tested scenarios showed zero failures and low response times, indicat-
ing the system is not only meeting but exceeding the current operational
requirements for the Hotel Search feature.

Recommendations:

– The Hotel Search feature is well-optimized for the current and foreseeable
user load. No immediate action is required.

– It is recommended to periodically re-evaluate performance as user numbers
grow or as new features are added.

– Consider stress testing at higher loads (e.g., 2–3× current peak) to ensure
continued robustness and to identify any potential bottlenecks before they
impact users.

Next, I will review the report for completeness and clarity, ensuring all relevant
findings and recommendations are clearly presented.

3. Conclusion

• Conclusion:

The performance testing of the Hotel Search feature in the Hotel Reservation sys-
tem confirms that the feature is robust, efficient, and reliable under both average
and peak operational loads as defined in the operational profile. Key findings in-
clude:

– Median and 90th percentile response times are consistently low (7–12ms),
ensuring a responsive user experience.

– No failures or errors were observed during testing, indicating high reliability.

– The system’s tested throughput (1.5 requests/second) exceeds the peak op-
erational requirement (0.7 requests/second), providing ample headroom
for growth or unexpected spikes in usage.

Recommendations:

– No immediate optimizations are necessary.

– Continue to monitor performance as user numbers grow or as new features
are introduced.

– Plan for periodic re-testing and consider stress testing at higher loads to
proactively identify any future bottlenecks.

The Hotel Search feature is well-positioned to support the current and antic-
ipated needs of the Hotel Reservation system. No further steps are currently
planned unless new requirements or test data become available.

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 97

B.4 Generated scenarios for the Social Network scenario

• Alice (User creates and shares a post with text only)

1. Alice logs into the social network.

2. Alice navigates to the post creation interface.

3. Alice types a text message into the post input field.

4. Alice submits the post.

5. The system processes the post creation request, storing the post content.

6. The system updates Alice’s timeline and the timelines of her followers.

7. Alice sees the new post appear on her timeline and her followers see it on theirs.

• Bob (User creates and shares a post with media and user mentions)

1. Bob logs into the social network.

2. Bob navigates to the post creation interface.

3. Bob types a text message and attaches media files (images or videos) to the post.

4. Bob mentions other users by typing ’@’ followed by their usernames.

5. Bob submits the post.

6. The system processes the media upload and associates the media with the post.

7. The system processes the user mentions, notifying the mentioned users.

8. The system stores the post content and media.

9. The system updates Bob’s timeline and the timelines of his followers.

10. Bob and his followers see the new post with media and mentions on their time-
lines.

Alternative flow:

– If media upload fails, Bob is notified and can retry or remove the media.

– If mentioned users do not exist, Bob is notified to correct the mentions.

• Carol (User creates and shares a post with a link and URL shortening)

1. Carol logs into the social network.

2. Carol navigates to the post creation interface.

3. Carol types a text message and includes a long URL link in the post.

4. Carol submits the post.

5. The system processes the post creation request and automatically shortens the
URL.

6. The system stores the post content with the shortened URL.

7. The system updates Carol’s timeline and the timelines of her followers.

8. Carol and her followers see the new post with the shortened URL on their time-
lines.

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 98

Alternative flow:

– If URL shortening service is unavailable, the system stores the original URL and
notifies Carol.

– If the URL is invalid, Carol is notified to correct it before submitting.

• Diana (User creates and shares a post with media only)

1. Diana logs into the social network.

2. Diana navigates to the post creation interface.

3. Diana attaches media files (images or videos) without any text.

4. Diana submits the post.

5. The system processes the media upload and associates the media with the post.

6. The system stores the post content with media.

7. The system updates Diana’s timeline and the timelines of her followers.

8. Diana and her followers see the new post with media on their timelines.

Alternative flow:

– If media upload fails, Diana is notified and can retry or remove the media.

B.5 Generated locust file for the Social Network scenario

from locust import HttpUser, task, between
import random

class SocialNetworkUser(HttpUser):
wait_time = between(1, 3)

def on_start(self):
Simulate user login to get login_token cookie
response = self.client.post("/api/user/login", data={"username":
"testuser", "password": "testpass"}, allow_redirects=False)
self.cookies = response.cookies

@task(3)
def create_text_post(self):

post_data = {
"text": "This is a performance test post with text only.",
"media": [],
"mentions": [],
"urls": []

}
self.client.post("/api/post/compose", json=post_data,
cookies=self.cookies)

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 99

@task(2)
def create_media_post(self):

post_data = {
"text": "",
"media": ["http://example.com/image1.jpg"],
"mentions": [],
"urls": []

}
self.client.post("/api/post/compose", json=post_data,
cookies=self.cookies)

@task(2)
def create_media_mentions_post(self):

post_data = {
"text": "Check this out @user1 @user2",
"media": ["http://example.com/image2.jpg"],
"mentions": ["user1", "user2"],
"urls": []

}
self.client.post("/api/post/compose", json=post_data,
cookies=self.cookies)

@task(1)
def create_url_post(self):

post_data = {
"text": "Visit this link!",
"media": [],
"mentions": [],
"urls": ["http://example.com/very/long/url"]

}
self.client.post("/api/post/compose", json=post_data,
cookies=self.cookies)

B.6 Generated report for the Hotel Reservation scenario

1. Performance Test Interpretation: Post Creation and Sharing

• This section provides an interpretation of the performance test results for the
’Post Creation and Sharing’ feature of the Social Network project, referencing
the operational profile to contextualize the findings.

Operational Profile:
The system experiences an average of 300 daily users, with peak days reaching
up to 1000 users. This necessitates a robust infrastructure capable of handling
significant spikes in activity, particularly for core features such as post creation
and sharing.

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 100

Performance Test Results (Load Testing):

– Endpoint: /api/post/compose

* Request Count: 746

* Requests per second: 2.49

* Average Response Time: 1.3 seconds

* Median Response Time: 1.1 seconds

* 90th Percentile Response Time: 1.8 seconds

* 99th Percentile Response Time: 2.3 seconds

* Maximum Response Time: 2.9 seconds

* Failure Count: 0

* Failure Rate: 0 failures/sec

Interpretation:

– The system consistently handles post creation requests with excellent re-
sponsiveness. The median and 90th percentile response times are well be-
low the 5-second target, ensuring a smooth user experience even under
load.

– No failures were observed during the test, indicating high reliability and ro-
bustness of the feature.

– Given the operational profile, the system demonstrates strong performance
and stability, comfortably supporting both average and peak user loads.

2. Comparison with Operational Profile Requirements

• This section explicitly compares the observed performance of the ’Post Creation
and Sharing’ feature with the requirements derived from the operational profile,
ensuring clarity and actionable insights.

Operational Profile Requirements:

– The system must support up to 1000 daily users, with the ability to handle
spikes in activity, especially for post creation and sharing.

– During peak hours, the system should be able to process several post cre-
ation requests per second with minimal failures and acceptable response
times (ideally under 5 seconds for the majority of users).

Observed Performance:

– Throughput: The system handled approximately 2.5 requests per second,
which is well-aligned with expected peak usage scenarios.

– Response Times: All key response time metrics (median, 90th, and 99th per-
centiles) are significantly below the 5-second threshold, ensuring a respon-
sive user experience.

– Reliability: The system exhibited zero failures, confirming its resilience un-
der load.

Assessment: The feature fully meets and exceeds operational requirements for
both average and peak usage. The system demonstrates excellent performance,
responsiveness, and reliability, with no signs of degradation under stress.

APPENDIX B. TEXTUAL RESULTS RETURNED FROM AGENT EXECUTIONS 101

3. Recommendations and Next Steps

• Based on the successful performance test results and alignment with operational
expectations, the following recommendations are provided:

– Maintain current architecture and configurations, as they are effectively sup-
porting the required load.

– Continue monitoring performance metrics in production to ensure sustained
responsiveness and reliability.

– Periodically re-run load and stress tests to validate performance as user base
grows.

– Consider implementing proactive alerting for any future anomalies, although
current performance indicates no immediate concerns.

– Document current performance benchmarks as a reference for future scal-
ability planning.

	Introduction
	Motivation
	Objective
	Approach
	Contributions of this thesis
	Structure of the thesis

	Problem Statement
	Problems with traditional approaches to performance testing
	Requirements for the suggested solution

	Review of the state of the art
	Preparation of a Systematic Mapping Study
	Related secondary literature
	Research method
	Research Questions
	Study Selection
	Search Strategy
	Study Selection and Eligibility Assessment
	Data Extraction

	Results
	RQ1: How did the research field evolve over the past years?
	RQ2: What are the existing approaches to automating performance testing in software systems using AI?
	RQ3: How effective are AI-based approaches compared to other performance testing baselines?
	RQ4: What metrics and methods are used to evaluate the success of AI-driven performance testing?

	Discussion and conclusion

	Problem Solution
	Fundamental idea
	Current approach on performance testing
	Scenario design
	Test execution
	Result analysis

	Identifying attack surfaces for automation
	Scenario design
	Test execution
	Result analysis

	Overall architecture
	System context overview
	Container overview
	The Performance Testing Agent Context
	The Third Party Resources Context

	Agent architectures
	Fundamental agent architecture
	Agents overview
	Agents implementation

	Solutions mapped to problems
	Requirements-Solution Mapping
	Tactics–Solution Mapping

	Evaluation
	Evaluation objectives
	Repository selection
	Experimental setup
	Hotel Reservation
	Social Network

	Execution and collected results
	Hotel Reservation
	Social Network

	Discussion
	Evaluation interpretation
	Interpretation of the Hotel Reservation scenario
	Interpretation of the Social Network scenario
	Overall tool effectiveness

	Threats to Validity

	Conclusion and Further Studies
	Search query for the mapping study
	Textual results returned from agent executions
	Generated scenarios for the Hotel Reservation scenario
	Generated locust file for the Hotel Reservation scenario
	Generated report for the Hotel Reservation scenario
	Generated scenarios for the Social Network scenario
	Generated locust file for the Social Network scenario
	Generated report for the Hotel Reservation scenario

